Duchenne muscular dystrophy (DMD) is a debilitating X-linked muscle disease. We have used sequence information from complementary DNA clones, derived from the gene that is deleted in DMD patients, to generate an antiserum that stains the surface membrane of intact human and mouse skeletal muscle, but not that of DMD patients and mdx mice. Here we identify the protein reacting with this antiserum as a single component of relative molecular mass 210,000 (Mr = 210K) that fractionates with a low-ionic strength extract of intact human and mouse skeletal muscle. It is therefore distinct from the 400 K protein found in the heavy microsomal fraction of normal muscle and identified as a putative product of the DMD gene. We also analyse further the disease specificity of the antiserum. Positive staining is seen in normal controls, and in samples from patients with a wide range of muscular dystrophies other than DMD. Becker muscular dystrophy, which is allelically related to DMD, was the only other exception, and gave a sporadic staining pattern. The demonstration of a specific defect in the surface membrane of DMD muscle fibres substantiates the hypothesis that membrane lesions may initiate muscle degradation in DMD.
SummaryDuchenne muscular dystrophy (DMD) is characterized by clinical weakness and progressive necrosis of striated muscle as a consequence of dystrophin deficiency. While all skeletal muscle groups are thought to be affected, enigmatically, the extraocular muscles (EOM) appear clinically unaffected. Here we show that dystrophin deficiency does not result in myonecrosis or pathologically elevated levels of intracellular calcium ([Ca2+]i) in EOM. At variance with a previous report, we find no evidence for dystrophin-related protein/utrophin up-regulation in EOM. In vitro experiments demonstrate that extraocular muscles are inherently more resistant to necrosis caused by pharmacologically elevated [Ca2+]i levels when compared with pectoral musculature. We believe that EOM are spared in DMD because of their intrinsic ability to maintain calcium homeostasis better than other striated muscle groups. Our results indicate that modulating levels of [Ca2+]i in muscle may be of potential therapeutic use in DMD.
In the course of studying the secretory products of microglia, we detected protease activity in the conditioned medium. Various proteins (casein, histone, myelin basic protein, and extracellular matrix) were digested. The protease activity was characterized by using purified myelin basic protein as a substrate. Maximal activity was observed at neutral pH levels (7-8), which was different from the optimum pH level of proteolytic activity observed in the cell homogenate. The activity was inhibited approximately 60 and 50% by 1 mM phenylmethylsulfonyl fluoride and 40 microM elastatinal, respectively. In gel filtration, the major activity, which was inhibited in the presence of N-methoxysuccinyl-Ala-Ala-Pro-Val-methyl chloride, eluted at a position corresponding to a molecular mass of approximately 25 kDa. These results suggest that the major protease present in microglial conditioned medium is elastase or an elastase-like protease. This suggestion was confirmed by the finding that the 25-kDa protein band was stained with anti-elastase antiserum by western blotting. De novo synthesis of elastase in microglia was supported by [35S]methionine incorporation. In the presence of lipopolysaccharide, the secretory elastase decreased. These results demonstrate that microglia secrete proteases, one of which was identified as elastase. The significance of this enzyme production in physiological and pathological conditions is discussed.
Immunohistochemical analysis of the inflammatory cells and complement C3 in the rat skeletal muscle was performed chronologically in bupivacaine-induced myonecrosis. At 30 minutes after injection, polymorphonuclear leukocytes appeared and increased in number, with a peak value at 12 hours, while macrophages reached the highest level at 2 days. In contrast, T cells comprised only a small population. Two weeks after the injection, all types of the inflammatory cells returned to the normal level. Deposition of complement C3 was recognized at 60 minutes at the surface membrane of degenerating muscle fiber. Our observation suggests the importance of both polymorphonuclear leukocytes and complement C3 in the early stage, and macrophages in the later stage of bupivacaine-induced myonecrosis. In addition, our findings cast doubt on the pathological significance of T cells in this model.
A single direct injection of a local anesthetic, 0.5% bupivacaine hydrochloride (BPVC) (Marcaine), into rat soleus and extensor digitorum longus (EDL) muscles produced massive fiber necrosis with extensive phagocytosis followed by rapid regeneration, predominantly in the soleus. Since the sarcoplasmic reticulum (SR) was functionally disturbed by BPVC administration as confirmed by an in vitro study, the sarcolemmal lysis seen in the early phase of degeneration was not assumed to simply result from direct damage to the plasma membrane caused by BPVC. The extracellular fluid containing a high concentration of calcium (Ca) ions then permeated into the sarcoplasm through the defective membrane resulting in hyper-contracted myofibrils. Selective damage to the Z-line, an early sign of muscle degeneration, was shown by electron microscopy and SDS gel electrophoresis (preferential loss of alpha-actinin). Administration of leupeptin, a thiol protease inhibitor, proved to be ineffective in inhibiting the necrotic process, because the BPVC induced muscle fiber breakdown was probably too acute and fulminant to demonstrate the inhibitory effect upon the degenerative process. Well preserved satellite cells, peripheral nerves, and acetylcholinesterase activity, and the absence of fibrous tissue proliferation in this system may be responsible for the extremely rapid regeneration with complete muscle fiber type differentiation. Since the sequence of fiber breakdown induced by BPVC administration was similar to that of progressive muscular dystrophy, this chemical will be one of the most useful tools for studying the pathophysiology of fiber necrosis and regeneration in diseased muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.