von Willebrand factor (VWF) is synthesized primarily in vascular endothelial cells and secreted into the plasma as unusually large VWF multimers. Normally, these multimers are quickly degraded into smaller forms by a plasma metalloproteinase, VWF-cleaving protease (VWF-CP). Decreases in the activity of this enzyme result in congenital and acquired thrombotic thrombocytopenic purpura (TTP). The human VWF-CP has recently been purified. Cloning of the corresponding cDNA revealed that the 1,427-aa polypeptide is a member of the ADAMTS gene family, termed ADAMTS13. Twelve rare mutations in this gene have been identified in patients with congenital TTP. Here, we report missense and nonsense mutations in two Japanese families with Upshaw-Schulman syndrome, congenital TTP with neonatal onset and frequent relapses. The comparison of individual ADAMTS13 genotypes and plasma VWF-CP activities indicated that the R268P, Q449stop, and C508Y mutations abrogated activity of the enzyme, whereas the P475S mutant retained low but significant activity. The effects of these mutations were further confirmed by expression analysis in HeLa cells. Recombinant VWF-CP containing either the R268P or C508Y mutations was not secreted from cells. In contrast, Q449stop and P475S mutants were normally secreted but demonstrated minimal activity. Genotype analysis of 364 Japanese subjects revealed that P475S is heterozygous in 9.6% of individuals, suggesting that approximately 10% of the Japanese population possesses reduced VWF-CP activity. We report on a single-nucleotide polymorphism associated with alterations in VWF-CP activity; it will be important to assess this single-nucleotide polymorphism as a risk factor for thrombotic disorders.
Summary. Upshaw–Schulman syndrome (USS) is an extremely rare hereditary deficiency of ADAMTS13 activity, termed congenital TTP. The clinical signs are usually mild during childhood, often with isolated thrombocytopenia. But their symptoms become more evident when patients have infections or get pregnant. We identified 43 USS‐patients in Japan, who ranged in age from early childhood to 79 years of age. Analysing the natural history of these USS patients based on ADAMTS13 gene mutations may help characterise their clinical phenotypes. Severe neonatal jaundice that requires exchange blood transfusion, a hallmark of USS, was found in 18 of 43 patients (42%). During childhood, 25 of 43 patients were correctly diagnosed with USS without gender disparity. These 25 patients were categorised as having ‘the early‐onset phenotype’. Between 15 and 45 years of age, 15 were correctly diagnosed, and, interestingly, they were all female. The remaining three patients were male and were diagnosed when they were older than 45 years of age, suggesting that they were ‘the late‐onset phenotype’. Two of these three males developed sudden overt TTP when they were 55 and 63 years old, respectively. These two men had two different homozygous ADAMTS13 gene mutations, p.R193W/p.R193W and p.C1024R/p.C1024R, respectively. Both of which were not discovered in the US or Western countries. In vitro expression studies showed that these two proteins were consistently secreted into the culture medium but to a lesser extent and with reduced activity compared to the wild‐type protein. Our results indicate that ‘the late‐onset phenotype’ of USS is formed with ethnic specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.