Abstract-Adiponectin, an adipocyte-derived protein, has been suggested to play an important role in insulin sensitivity.We examined the association between insulin sensitivity (M value) evaluated by the euglycemic-hyperinsulinemic glucose clamp and adiponectin concentrations in 30 essential hypertensives (EHT) and 20 normotensives (NT) and investigated the effect of blockade of the renin-angiotensin system (RAS) on adiponectin concentrations. EHT were divided into 12 insulin-resistant EHT (EHT-R) and 18 non-insulin-resistant EHT (EHT-N) using meanϪ1 SD of the M value in NT. There were no intergroup differences in age, gender, and body mass index (BMI). EHT-R had significantly higher levels of insulin and triglyceride and lower levels of adiponectin than did NT and EHT-N. EHT-R had higher levels of free fatty acid and lower levels of high-density lipoprotein (HDL) cholesterol than did EHT-N. Adiponectin concentrations were positively correlated with M value and HDL cholesterol and negatively correlated with BMI, insulin, free fatty acid, and triglyceride but not with blood pressure. M value, BMI, and HDL cholesterol were independent determinants of adiponectin concentrations in multiple and stepwise regression analyses. Sixteen EHT were treated with an angiotensin-converting enzyme inhibitor (temocapril, 4 mg/d; nϭ9) or an angiotensin II receptor blocker (candesartan, 8 mg/d; nϭ7) for 2 weeks. Treatment with temocapril or candesartan significantly decreased blood pressure and increased M value and adiponectin concentrations but did not affect BMI and HDL cholesterol. These results suggest that hypoadiponectinemia is related to insulin resistance in essential hypertension and that RAS blockade increases adiponectin concentrations with improvement in insulin sensitivity.
This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L12 ordered precipitates, so it is also named as “high entropy superalloy (HESA)”. The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors’ knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.
TNF-alpha levels were significantly higher in the soleus and EDL muscles, but not in the epididymal fat, in the FFRs compared with the control rats. Temocapril and CS-866 lowered systolic blood pressure, improved insulin resistance, and reduced TNF-alpha in both skeletal muscles. There were significant negative correlations between M values and TNF-alpha levels in both soleus and EDL muscles. Also, the soleus muscle strip incubation with 10(-7) mol/l angiotensin II increased TNF-alpha secreted into the incubation medium compared to the incubation without angiotensin II. These results suggest that skeletal muscle TNF-alpha is linked to insulin resistance and hypertension and that angiotensin II may be one of the factors that regulate skeletal muscle TNF-alpha.
This study indicates that kallikrein/kinin protects against gentamicin-induced nephrotoxicity by inhibiting inflammatory cell recruitment and apoptosis through suppression of oxidative stress-mediated signalling pathways. These findings raise the potential of applying kallikrein therapy approaches in treating aminoglycoside-induced renal damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.