The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multi-center neuroimaging data, we analyzed brain MRI scans from 2,028 schizophrenia patients and 2,540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared to healthy controls, patients with schizophrenia had smaller hippocampus (Cohen’s d=−0.46), amygdala (d=−0.31), thalamus (d=−0.31), accumbens (d=−0.25), and intracranial volumes (d=−0.12) and larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia that is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be employed across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness.
12The cerebral cortex underlies our complex cognitive capabilities, yet we know little about the specific genetic loci influencing human cortical structure. To identify genetic variants, including structural variants, impacting cortical structure, we conducted a genome-wide association meta-analysis of brain MRI data from 51,662 individuals. We analysed the surface area and average thickness of the whole cortex and 34 regions with known functional specialisations. We identified 255 nominally significant loci (P ≤ 5 x 10 -8 ); 199 survived multiple testing correction (P ≤ 8.3 x 10 -10 ; 187 surface area; 12 thickness). We found significant enrichment for loci influencing total surface area within regulatory elements active during prenatal cortical development, supporting the radial unit hypothesis. Loci impacting regional surface area cluster near genes in Wnt signalling pathways, known to influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression and ADHD.One Sentence Summary: Common genetic variation is associated with inter-individual variation in the structure of the human cortex, both globally and within specific regions, and is shared with genetic risk factors for some neuropsychiatric disorders.The human cerebral cortex is the outer grey matter layer of the brain, which is implicated in multiple aspects of higher cognitive function. Its distinct folding pattern is characterised by convex (gyral) and concave (sulcal) regions. Computational brain mapping approaches use the consistent folding patterns across individual cortices to label brain regions(1). During fetal development excitatory neurons, the predominant neuronal cell-type in the cortex, are generated from neural progenitor cells in the developing germinal zone(2). The radial unit hypothesis(3) posits that the expansion of cortical surface area (SA) is driven by the proliferation of these neural progenitor cells, whereas thickness (TH) is determined by the number of neurogenic divisions. Variation in global and regional measures of cortical SA and TH are associated with neuropsychiatric disorders and psychological traits(4) ( Table S1). Twin and family-based brain imaging studies show that SA and TH measurements are highly heritable and are largely influenced by independent genetic factors(5). Despite extensive studies of genes impacting cortical structure in model organisms (6), our current understanding of genetic variation impacting human cortical size and patterning is limited to rare, highly penetrant variants (7,8). These variants often disrupt cortical development, leading to altered post-natal structure. However, little is known about how common genetic variants impact human cortical SA and TH.To address this, we conducted genome-wide association meta-analyses of cortical SA and TH measures in 51,662 individuals from 60 cohorts from around the world (Tables S2-S4). Cortical measures were extracted from structural brain MRI scan...
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.
In schizophrenia, the cortex shows excessive thinning over time in widespread areas of the brain, most pronounced in the frontal and temporal areas, and progresses across the entire course of the illness. The excessive thinning of the cortex appears related to outcome and medication intake.
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attentiondeficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.