Alzheimer's disease (AD) is one of the most significant neurodegenerative disorders and its symptoms mostly appear in aged people. Catechol-o-methyltransferase (COMT) is one of the known target enzymes responsible for AD. With the use of 23 known inhibitors of COMT, a query has been generated and validated by screening against the database of 1500 decoys to obtain the GH score and enrichment value. The crucial features of the known inhibitors were evaluated by the online ZINC Pharmer to identify new leads from a ZINC database. Five hundred hits were retrieved from ZINC Pharmer and by ADMET (absorption, distribution, metabolism, excretion, and toxicity) filtering by using FAF-Drug-3 and 36 molecules were considered for molecular docking. From the COMT inhibitors, opicapone, fenoldopam, and quercetin were selected, while ZINC63625100_413 ZINC39411941_412, ZINC63234426_254, ZINC63637968_451, and ZINC64019452_303 were chosen for the molecular dynamics simulation analysis having high binding affinity and structural recognition. This study identified the potential COMT inhibitors through pharmacophore-based inhibitor screening leading to a more complete understanding of molecular-level interactions.
In the current investigation, we prepared a series of novel spiro[indole-thiazolidines] derivatives (5a-5h) from 5-substituted isatin derivatives and thioglycolic acid (TGA) with ZrSiO as an efficient catalyst under microwave irradiation. The significant merits of this protocol have some significant merits such as simplicity in operation, simple, efficient workup, good practical yields of product and the employment of recyclable catalyst. All the new synthesized scaffold has been well characterized by various spectroscopic methods and elemental analysis. All the spiro scaffolds were subjected to in vitro anti-mycobacterial activity against the Mycobacterium tuberculosis (HRv) strain. We have carried out molecular docking study of our synthesized compounds. We also calculated theoretically ADME-Tox parameters for synthesized compounds.
Receptor‐based QSAR approaches can enumerate the energetic contributions of amino acid residues toward ligand binding only when experimental binding affinity is associated. The structural data of protein‐ligand complexes are witnessing a tremendous growth in the Protein Data Bank deposited with a few entries on binding affinity. We present here a new approach to compute the Energetic CONTributions of Amino acid residues and its possible Cross‐Talk (ECONTACT) to study ligand binding using per‐residue energy decomposition, molecular dynamics simulations and rescoring method without the need for experimental binding affinity. This approach recognizes potential cross‐talks among amino acid residues imparting a nonadditive effect to the binding affinity with evidence of correlative motions in the dynamics simulations. The protein‐ligand interaction energies deduced from multiple structures are decomposed into per‐residue energy terms, which are employed as variables to principal component analysis and generated cross‐terms. Out of 16 cross‐talks derived from eight datasets of protein‐ligand systems, the ECONTACT approach is able to associate 10 potential cross‐talks with site‐directed mutagenesis, free energy, and dynamics simulations data strongly. We modeled these key determinants of ligand binding using joint probability density function (jPDF) to identify cross‐talks in protein structures. The top two cross‐talks identified by ECONTACT approach corroborated with the experimental findings. Furthermore, virtual screening exercise using ECONTACT models better discriminated known inhibitors from decoy molecules. This approach proposes the jPDF metric to estimate the probability of observing cross‐talks in any protein‐ligand complex. The source code and related resources to perform ECONTACT modeling is available freely at https://www.gujaratuniversity.ac.in/econtact/.
Bisphenol A (BPA), a phenyl ring containing synthetic xenoestrogen, is widely used in the manufacture of polycarbonate plastics, epoxy resins and as a non-polymer additive to other plastics. Food is considered as the main source of exposure to BPA as it leaches out from food containers as well as surface coatings. It causes toxicity in the liver, kidney, brain, and other organs by initiating the process of lipid peroxidation. The present investigation was an attempt to evaluate the effect of BPA on steroidogenesis and its amelioration by quercetin. Inbred Swiss strain male albino mice were orally administered with 80, 120 and 240 mg per kg body weight per day of BPA for 45 days. The results revealed that BPA causes significant ( < 0.05) and dose-dependent changes in the body weight and biochemical parameters like protein, cholesterol and lipid contents as well as activities of 3β-and 17β-hydroxysteroid dehydrogenases in the testis of mice. It was also found to significantly reduce the testosterone level in serum. Oral administration of quercetin (30, 60 and 90 mg per kg body weight per day) along with a high dose of BPA (240 mg per kg body weight per day) for 45 days caused significant amelioration in the body weight and steroidogenesis as compared to the BPA alone treated group. The effect was dose-dependent. This amelioration in BPA-induced toxicity might be due to the antioxidative properties of quercetin. The reduction in the function of enzymes was confirmed by bindings. BPA and quercetin show competitive binding with steroidogenic enzymes as well as binding with each other. This could be a possible mechanism to reduce the toxic effect of BPA which has been supported by molecular dynamics simulations for molecular level recognition with structural insights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.