Immunotherapy using short immunogenic peptides of disease-related autoantigens restores immune tolerance in preclinical disease models. We studied safety and mechanistic effects of injecting human leukocyte antigen-DR4()-restricted immunodominant proinsulin peptide intradermally every 2 or 4 weeks for 6 months in newly diagnosed type 1 diabetes patients. Treatment was well tolerated with no systemic or local hypersensitivity. Placebo subjects showed a significant decline in stimulated C-peptide (measuring insulin reserve) at 3, 6, 9, and 12 months versus baseline, whereas no significant change was seen in the 4-weekly peptide group at these time points or the 2-weekly group at 3, 6, and 9 months. The placebo group's daily insulin use increased by 50% over 12 months but remained unchanged in the intervention groups. C-peptide retention in treated subjects was associated with proinsulin-stimulated interleukin-10 production, increased FoxP3 expression by regulatory T cells, low baseline levels of activated β cell-specific CD8 T cells, and favorable β cell stress markers (proinsulin/C-peptide ratio). Thus, proinsulin peptide immunotherapy is safe, does not accelerate decline in β cell function, and is associated with antigen-specific and nonspecific immune modulation.
The normal function of lymphatic vessels is to facilitate the trafficking of antigen presenting cells to draining lymph nodes where they evoke an immune response. Donor lymphatic vessels are not connected to that of recipients' during organ transplantation. The pathophysiology of this disruption has received little attention. Murine heterotopic cardiac transplantation has been used extensively in transplantation research. Following vascularized organ transplantation, the main site of allosensitization is thought to be in the spleen of the recipient as a result of migration of donor passenger leukocytes via blood. Here, using Single Photon Emission Computed Tomography/Computerized Tomography (SPECT/CT) lymphoscintigraphy, we studied the pattern of lymphatic flow from mouse heterotopic abdominal cardiac grafts and identified mediastinal lymph nodes as the draining nodes for the donor graft. Staining with HY tetramer after transplantation of HY mismatched heart grafts and ELISPOT following allogeneic grafts to detect donor specific T cells revealed them as important sites for allosensitization. Our data indicates that mediastinal lymph nodes play a crucial role in the alloimmune response in this model, and should be used for ex vivo and adoptive transfer studies after transplantation in addition to the spleen.
†The authors contributed equally to this work.Memory T cells are the very essence of adaptive immunity with their rapid and efficient response to antigen rechallenge and long-term persistence. However, it is becoming increasingly evident that when primed with self or transplanted tissue, these cells play a key role in causing and perpetuating tissue damage. Furthermore, current treatments, which efficiently control the naive response, have limited effects on primed T cells. We have used a treatment based on a combination of antibodies specific for molecules expressed by activated T lymphocytes to selectively remove these cells. This approach, which we termed multi-hit therapy, leads to cumulative binding of antibodies to the target T cells and a striking prolongation of skin graft survival in presensitized recipients in a stringent skin transplant model. The findings are consistent with the depletion of graft-specific CD4+ and CD8+ T cells, although other modes of action, such as T-cell regulation and altered migration could play a role. In conclusion, our therapeutic strategy controls primed T cells which are a major driving force in the pathology of many autoimmune diseases and in transplant rejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.