We investigated the correlations of deletions of mitochondrial DNA in skeletal muscle with clinical manifestations of mitochondrial myopathies, a group of disorders defined either by biochemical abnormalities of mitochondria or by morphologic changes causing a ragged red appearance of the muscle fibers histochemically. We performed genomic Southern blot analysis of muscle mitochondrial DNA from 123 patients with different mitochondrial myopathies or encephalomyopathies. Deletions were found in the mitochondrial DNA of 32 patients, all of whom had progressive external ophthalmoplegia. Some patients had only ocular myopathy, whereas others had Kearns-Sayre syndrome, a multisystem disorder characterized by ophthalmoplegia, pigmentary retinopathy, heart block, and cerebellar ataxia. The deletions ranged in size from 1.3 to 7.6 kilobases and were mapped to different sites in the mitochondrial DNA, but an identical 4.9-kilobase deletion was found in the same location in 11 patients. Biochemical analysis showed decreased activities of NADH dehydrogenase, rotenone-sensitive NADH-cytochrome c reductase, succinate-cytochrome c reductase, and cytochrome c oxidase, four enzymes of the mitochondrial respiratory chain containing subunits encoded by mitochondrial DNA. We conclude that deletions of muscle mitochondrial DNA are associated with ophthalmoplegia and may result in impaired mitochondrial function. However, the precise relation between clinical and biochemical phenotypes and deletions remains to be defined.
Kearns-Sayre syndrome (KSS) and progressive external ophthalmoplegia (PEO) are related neuromuscular disorders characterized by ocular myopathy and ophthalmoplegia. Almost all patients with KSS and about half with PEO harbor large deletions in their mitochondrial genomes. The deletions differ in both size and location, except for one, 5 kilobases long, that is found in more than one-third of all patients examined. This common deletion was found to be flanked by a perfect 13-base pair direct repeat in the normal mitochondrial genome. This result suggests that homologous recombination deleting large regions of intervening mitochondrial DNA, which previously had been observed only in lower eukaryotes and plants, operates in mammalian mitochondrial genomes as well, and is at least one cause of the deletions found in these two related mitochondrial myopathies.
We have identified large-scale deletions in muscle mitochondrial DNA (mtDNA) in seven of seven patients with Kearns-Sayre syndrome (KSS). We found no detectable deletions in the mtDNA of ten non-KSS patients with other mitochondrial myopathies or encephalomyopathies, or three normal controls. The deletions ranged in size from 2.0 to 7.0 kb, and did not localize to any single region of the mitochondrial genome. The proportion of mutated genomes in each KSS patient ranged from 45% to 75% of total mtDNA. There was no correlation between the size or site of the deletion, biochemical abnormality of mitochondrial enzymes, or clinical severity. The data bolster arguments that KSS is a unique disorder and genetic in origin.
A single direct injection of a local anesthetic, 0.5% bupivacaine hydrochloride (BPVC) (Marcaine), into rat soleus and extensor digitorum longus (EDL) muscles produced massive fiber necrosis with extensive phagocytosis followed by rapid regeneration, predominantly in the soleus. Since the sarcoplasmic reticulum (SR) was functionally disturbed by BPVC administration as confirmed by an in vitro study, the sarcolemmal lysis seen in the early phase of degeneration was not assumed to simply result from direct damage to the plasma membrane caused by BPVC. The extracellular fluid containing a high concentration of calcium (Ca) ions then permeated into the sarcoplasm through the defective membrane resulting in hyper-contracted myofibrils. Selective damage to the Z-line, an early sign of muscle degeneration, was shown by electron microscopy and SDS gel electrophoresis (preferential loss of alpha-actinin). Administration of leupeptin, a thiol protease inhibitor, proved to be ineffective in inhibiting the necrotic process, because the BPVC induced muscle fiber breakdown was probably too acute and fulminant to demonstrate the inhibitory effect upon the degenerative process. Well preserved satellite cells, peripheral nerves, and acetylcholinesterase activity, and the absence of fibrous tissue proliferation in this system may be responsible for the extremely rapid regeneration with complete muscle fiber type differentiation. Since the sequence of fiber breakdown induced by BPVC administration was similar to that of progressive muscular dystrophy, this chemical will be one of the most useful tools for studying the pathophysiology of fiber necrosis and regeneration in diseased muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.