We discovered that C-glucosides 4 bearing a heteroaromatic ring formed metabolically more stable inhibitors for sodium-dependent glucose cotransporter 2 (SGLT2) than the O-glucoside, 2 (T-1095). A novel thiophene derivative 4b-3 (canagliflozin) was a highly potent and selective SGLT2 inhibitor and showed pronounced anti-hyperglycemic effects in high-fat diet fed KK (HF-KK) mice.
Abstract-Chronic elevation of plasma aldosterone contributes to heart failure. Mineralocorticoid receptor (MR) antagonism is cardioprotective in such a setting, but whether such protection occurs in the presence of low-aldosterone concentrations remains unclear. We investigated whether MR blockade attenuates cardiac hypertrophy and failure in rats with salt-sensitive hypertension. Dahl salt-sensitive (DS) rats fed a high-salt diet from 7 weeks develop concentric left ventricular (LV) hypertrophy secondary to hypertension at 12 weeks followed by heart failure at 19 weeks (DS-CHF).DS rats on such a diet were treated with a non-antihypertensive dose of the selective MR antagonist eplerenone from 12 to 19 weeks. Renin activity and aldosterone concentration in plasma were decreased in DS-CHF rats compared with controls. LV hypertrophy and fibrosis, as well as macrophage infiltration around coronary vessels, were apparent in DS-CHF rats. The amounts of mRNAs for 11-hydroxysteroid dehydrogenase type 1, MR, monocyte chemoattractant protein 1, and osteopontin were increased in these hearts. Treatment of DS-CHF rats with eplerenone inhibited these changes in gene expression, as well as coronary vascular inflammation and heart failure. Eplerenone attenuated both the decrease in the ratio of reduced to oxidized glutathione and the increase in NADPH oxidase activity apparent in DS-CHF rat hearts. MR blockade with eplerenone thus resulted in attenuation of LV hypertrophy and failure, without an antihypertensive effect, in rats with low-aldosterone hypertension.
Statin therapy may be associated with lower mortality in patients with heart failure, but the underlying mechanism of such an association is unknown. We have evaluated the effects of pitavastatin on cardiac function and survival in a rat model of hypertensive heart failure and investigated the molecular mechanism of the observed effects. Dahl salt-sensitive rats fed with high-salt diet from 7 weeks of age developed compensatory left ventricular hypertrophy at 12 weeks and heart failure at 19 weeks. Dahl salt-sensitive rats were treated with either vehicle or pitavastatin (0.3 mg/kg per day) from 7 or 12 weeks. Both early-onset and late-onset pitavastatin treatment reduced left ventricular fibrosis, improved cardiac function, and increased the survival rate apparent at 19 weeks. The increases in the expression levels of hypertrophic, profibrotic, and metalloproteinase genes as well as in gelatinase activities in the heart induced by the high-salt diet were suppressed by pitavastatin treatment. Furthermore, the level of cardiac endothelin-1 was increased in association with the development of heart failure in a manner sensitive to treatment with pitavastatin. Both early and late pitavastatin treatment thus improved cardiac function and survival, with modulation of extracellular matrix remodeling and endothelin-1 signaling possibly contributing to these beneficial effects.
Sodium-glucose cotransporter 2 (SGLT2) plays a major role in renal glucose reabsorption. To analyze the potential of insulinindependent blood glucose control, the effects of the novel SGLT2 inhibitor canagliflozin on renal glucose reabsorption and the progression of hyperglycemia were analyzed in Zucker diabetic fatty (ZDF) rats. The transporter activity of recombinant human and rat SGLT2 was inhibited by canagliflozin, with 150-to 12,000-fold selectivity over other glucose transporters. Moreover, in vivo treatment with canagliflozin induced glucosuria in mice, rats, and dogs in a dose-dependent manner. It inhibited apparent glucose reabsorption by 55% in normoglycemic rats and by 94% in hyperglycemic rats. The inhibition of glucose reabsorption markedly reduced hyperglycemia in ZDF rats but did not induce hypoglycemia in normoglycemic animals. The change in urinary glucose excretion should not be used as a marker to predict the glycemic effects of this SGLT2 inhibitor. In ZDF rats, plasma glucose and HbA1c levels progressively increased with age, and pancreatic b-cell failure developed at 13 weeks of age. Treatment with canagliflozin for 8 weeks from the prediabetic stage suppressed the progression of hyperglycemia, prevented the decrease in plasma insulin levels, increased pancreatic insulin contents, and minimized the deterioration of islet structure. These results indicate that selective inhibition of SGLT2 with canagliflozin controls the progression of hyperglycemia by inhibiting renal glucose reabsorption in ZDF rats. In addition, the preservation of b-cell function suggests that canagliflozin treatment reduces glucose toxicity via an insulinindependent mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.