緒言In order to elucidate the mechanism behind the decrease in the brittle-to-ductile transition (BDT) temperature with the addition of Ni, impact tests and tensile tests were performed at various test temperatures from 130K to 320K with Ni added ultra-low carbon steels. The dependence of absorbed impact energy on temperature and the Ni content indicates that the BDT temperature was decreased with the increasing Ni content, which suggests that the dislocation mobility at low temperatures was increased with the Ni content. The yield stress which is also influenced by the dislocation mobility was decreased at low temperatures while it was increased at room temperature with the Ni content. The values of the activation volume and the effective stress were measured at several temperatures, and then the dependence of the activation energy for dislocation gliding on Ni content was obtained by extrapolating the relation between temperature and the multiplication of the activation volume and the effective stress to 0K. The activation energy was found to decrease with the increasing Ni content, which suggests that the dislocation mobility was increased with the addition of Ni. Discrete dislocation dynamics simulation was also performed in order to calculate the dependence of fracture toughness on temperature and the Ni content, and it was clarified that the BDT temperature is decreased by increasing dislocation mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.