It has been thought that the lunar highland crust was formed by the crystallization and floatation of plagioclase from a global magma ocean, although the actual generation mechanisms are still debated. The composition of the lunar highland crust is therefore important for understanding the formation of such a magma ocean and the subsequent evolution of the Moon. The Multiband Imager on the Selenological and Engineering Explorer (SELENE) has a high spatial resolution of optimized spectral coverage, which should allow a clear view of the composition of the lunar crust. Here we report the global distribution of rocks of high plagioclase abundance (approaching 100 vol.%), using an unambiguous plagioclase absorption band recorded by the SELENE Multiband Imager. If the upper crust indeed consists of nearly 100 vol.% plagioclase, this is significantly higher than previous estimates of 82-92 vol.% (refs 2, 6, 7), providing a valuable constraint on models of lunar magma ocean evolution.
A global lunar topographic map with a spatial resolution of finer than 0.5 degree has been derived using data from the laser altimeter (LALT) on board the Japanese lunar explorer Selenological and Engineering Explorer (SELENE or Kaguya). In comparison with the previous Unified Lunar Control Network (ULCN 2005) model, the new map reveals unbiased lunar topography for scales finer than a few hundred kilometers. Spherical harmonic analysis of global topographic data for the Moon, Earth, Mars, and Venus suggests that isostatic compensation is the prevailing lithospheric support mechanism at large scales. However, simple rigid support is suggested to dominate for the Moon, Venus, and Mars for smaller scales, which may indicate a drier lithosphere than on Earth, especially for the Moon and Venus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.