Expanded polyglutamine repeats have been proposed to cause neuronal degeneration in Huntington's disease (HD) and related disorders, through abnormal interactions with other proteins containing short polyglutamine tracts such as the transcriptional coactivator CREB binding protein, CBP. We found that CBP was depleted from its normal nuclear location and was present in polyglutamine aggregates in HD cell culture models, HD transgenic mice, and human HD postmortem brain. Expanded polyglutamine repeats specifically interfere with CBP-activated gene transcription, and overexpression of CBP rescued polyglutamine-induced neuronal toxicity. Thus, polyglutamine-mediated interference with CBP-regulated gene transcription may constitute a genetic gain of function, underlying the pathogenesis of polyglutamine disorders.
Neuromyelitis optica (NMO) is an inflammatory and necrotizing disease clinically characterized by selective involvement of the optic nerves and spinal cord. There has been a long controversy as to whether NMO is a variant of multiple sclerosis (MS) or a distinct disease. Recently, an NMO-specific antibody (NMO-IgG) was found in the sera from patients with NMO, and its target antigen was identified as aquaporin 4 (AQP4) water channel protein, mainly expressed in astroglial foot processes. However, the pathogenetic role of the AQP4 in NMO remains unknown. We did an immunohistopathological study on the distribution of AQP4, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), activated complement C9neo and immunoglobulins in the spinal cord lesions and medulla oblongata of NMO (n = 12), MS (n = 6), brain and spinal infarction (n = 7) and normal control (n = 8). The most striking finding was that AQP4 immunoreactivity was lost in 60 out of a total of 67 acute and chronic NMO lesions (90%), but not in MS plaques. The extensive loss of AQP4 accompanied by decreased GFAP staining was evident, especially in the active perivascular lesions, where immunoglobulins and activated complements were deposited. Interestingly, in those NMO lesions, MBP-stained myelinated fibres were relatively preserved despite the loss of AQP4 and GFAP staining. The areas surrounding the lesions in NMO had enhanced expression of AQP4 and GFAP, which reflected reactive gliosis. In contrast, AQP4 immunoreactivity was well preserved and rather strongly stained in the demyelinating MS plaques, and infarcts were also stained for AQP4 from the very acute phase of necrosis to the chronic stage of astrogliosis. In normal controls, AQP4 was diffusely expressed in the entire tissue sections, but the staining in the spinal cord was stronger in the central grey matter than in the white matter. The present study demonstrated that the immunoreactivities of AQP4 and GFAP were consistently lost from the early stage of the lesions in NMO, notably in the perivascular regions with complement and immunoglobulin deposition. These features in NMO were distinct from those of MS and infarction as well as normal controls, and suggest that astrocytic impairment associated with the loss of AQP4 and humoral immunity may be important in the pathogenesis of NMO lesions.
Hereditary dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant neurologic disorder characterized by variable combinations of myoclonus, epilepsy, cerebellar ataxia, choreoathetosis and dementia. By specifically searching published brain cDNA sequences for the presence of CAG repeats we identified unstable expansion of a CAG in a gene on chromosome 12 in all the 22 DRPLA patients examined. A good correlation between the size of the CAG repeat expansion and the ages of disease onset is found in this group. Patients with earlier onset tended to have a phenotype of progressive myoclonus epilepsy and larger expansions. We propose that the wide variety of clinical manifestations of DRPLA can now be explained by the variable unstable expansion of the CAG repeat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.