Gliomas are associated with high mortality because of their exceedingly invasive character. As these tumors acquire their invasiveness from low-grade tumors, it is very important to understand the detailed molecular mechanisms of invasion onset. Recent evidences suggest the significant role of microRNAs in tumor invasion. Thus, we hypothesized that deregulation of microRNAs may be important for the malignant progression of gliomas. We found that the aberrant expression of miR-21 is responsible for glioma invasion by disrupting the negative feedback circuit of Ras/MAPK signaling, which is mediated by Spry2. Upregulation of miR-21 was triggered by tumor microenvironmental factors such as hyaluronan and growth factors in glioma cells lacking functional phosphatase and tensin homolog (PTEN), but not harboring wild-type PTEN. Consistently with these in vitro results, Spry2 protein levels were significantly decreased in 79.7% of invasive WHO grade II-IV human glioma tissues, but not in non-invasive grade I and normal tissues. The Spry2 protein levels were not correlated with their mRNA levels, but inversely correlated with miR-21 levels. Taken together, these results suggest that the posttranscriptional regulation of Spry2 by miR-21 has an essential role on the malignant progression of human gliomas. Thus, Spry2 may be a novel therapeutic target for treating gliomas.
Necrosis is a hallmark of glioblastoma (GBM) and is responsible for poor prognosis and resistance to conventional therapies. However, the molecular mechanisms underlying necrotic microenvironment-induced malignancy of GBM have not been elucidated. Here, we report that transglutaminase 2 (TGM2) is upregulated in the perinecrotic region of GBM and triggered mesenchymal (MES) transdifferentiation of glioma stem cells (GSC) by regulating master transcription factors (TF), such as C/EBPβ, TAZ, and STAT3. TGM2 expression was induced by macrophages/microglia-derived cytokines via NF-κB activation and further degraded DNA damage-inducible transcript 3 (GADD153) to induce C/EBPβ expression, resulting in expression of the MES transcriptome. Downregulation of TGM2 decreased sphere-forming ability, tumor size, and radioresistance and survival in a xenograft mouse model through a loss of the MES signature. A TGM2-specific inhibitor GK921 blocked MES transdifferentiation and showed significant therapeutic efficacy in mouse models of GSC. Moreover, TGM2 expression was significantly increased in recurrent MES patients and inversely correlated with patient prognosis. Collectively, our results indicate that TGM2 is a key molecular switch of necrosis-induced MES transdifferentiation and an important therapeutic target for MES GBM. .
The interplay between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAMs) promotes progression of glioblastoma multiforme (GBM). However, the detailed molecular mechanisms underlying the relationship between these two cell types remain unclear. Here, we demonstrate that ARS2 (arsenite-resistance protein 2), a zinc finger protein that is essential for early mammalian development, plays critical roles in GSC maintenance and M2-like TAM polarization. ARS2 directly activates its novel transcriptional target MGLL, encoding monoacylglycerol lipase (MAGL), to regulate the self-renewal and tumorigenicity of GSCs through production of prostaglandin E 2 (PGE 2), which stimulates β-catenin activation of GSC and M2-like TAM polarization. We identify M2-like signature downregulated by which MAGL-specific inhibitor, JZL184, increased survival rate significantly in the mouse xenograft model by blocking PGE 2 production. Taken together, our results suggest that blocking the interplay between GSCs and TAMs by targeting ARS2/MAGL signaling offers a potentially novel therapeutic option for GBM patients.
Epidermal growth factor receptor variant III (EGFRvIII) has been associated with glioma stemness, but the direct molecular mechanism linking the two is largely unknown. Here, we show that EGFRvIII induces the expression and secretion of pigment epithelium-derived factor (PEDF) via activation of signal transducer and activator of transcription 3 (STAT3), thereby promoting self-renewal and tumor progression of glioma stem cells (GSCs). Mechanistically, PEDF sustained GSC self-renewal by Notch1 cleavage, and the generated intracellular domain of Notch1 (NICD) induced the expression of Sox2 through interaction with its promoter region. Furthermore, a subpopulation with high levels of PEDF was capable of infiltration along corpus callosum. Inhibition of PEDF diminished GSC self-renewal and increased survival of orthotopic tumor-bearing mice. Together, these data indicate the novel role of PEDF as a key regulator of GSC and suggest clinical implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.