Shigella sonnei is a human-adapted pathogen that is emerging globally as the dominant agent of bacterial dysentery. To investigate local establishment, we sequenced the genomes of 263 Vietnamese S. sonnei isolated over 15 y. Our data show that S. sonnei was introduced into Vietnam in the 1980s and has undergone localized clonal expansion, punctuated by genomic fixation events through periodic selective sweeps. We uncover geographical spread, spatially restricted frontier populations, and convergent evolution through local gene pool sampling. This work provides a unique, high-resolution insight into the microevolution of a pioneering human pathogen during its establishment in a new host population.enteric disease | drug resistance | phylogeography | genomics
We performed a prospective multicenter study to address the lack of data on the etiology, clinical and demographic features of hospitalized pediatric diarrhea in Ho Chi Minh City (HCMC), Vietnam. Over 2,000 (1,419 symptomatic and 609 non-diarrheal control) children were enrolled in three hospitals over a 1-year period in 2009–2010. Aiming to detect a panel of pathogens, we identified a known diarrheal pathogen in stool samples from 1,067/1,419 (75.2%) children with diarrhea and from 81/609 (13.3%) children without diarrhea. Rotavirus predominated in the symptomatic children (664/1,419; 46.8%), followed by norovirus (293/1,419; 20.6%). The bacterial pathogens Salmonella, Campylobacter, and Shigella were cumulatively isolated from 204/1,419 (14.4%) diarrheal children and exhibited extensive antimicrobial resistance, most notably to fluoroquinolones and third-generation cephalosporins. We suggest renewed efforts in generation and implementation of policies to control the sale and prescription of antimicrobials to curb bacterial resistance and advise consideration of a subsidized rotavirus vaccination policy to limit the morbidity due to diarrheal disease in Vietnam.
Diarrheal disease is a complex syndrome that remains a leading cause of global childhood morbidity and mortality. The diagnosis of enteric pathogens in a timely and precise manner is important for making treatment decisions and informing public health policy, but accurate diagnosis is a major challenge in industrializing countries. Multiplex molecular diagnostic techniques may represent a significant improvement over classical approaches. We evaluated the Luminex xTAG gastrointestinal pathogen panel (GPP) assay for the detection of common enteric bacterial and viral pathogens in Vietnam. Microbiological culture and real-time PCR were used as gold standards. The tests were performed on 479 stool samples collected from people admitted to the hospital for diarrheal disease throughout Vietnam. Sensitivity and specificity were calculated for the xTAG GPP for the seven principal diarrheal etiologies. The sensitivity and specificity for the xTAG GPP were >88% for Shigella spp., Campylobacter spp., rotavirus, norovirus genotype 1/2 (GI/GII), and adenovirus compared to those of microbiological culture and/or real-time PCR. However, the specificity was low (∼60%) for Salmonella species. Additionally, a number of important pathogens that are not identified in routine hospital procedures in this setting, such as Cryptosporidium spp. and Clostridium difficile, were detected with the GPP. The use of the Luminex xTAG GPP for the detection of enteric pathogens in settings, like Vietnam, would dramatically improve the diagnostic accuracy and capacity of hospital laboratories, allowing for timely and appropriate therapy decisions and a wider understanding of the epidemiology of pathogens associated with severe diarrheal disease in low-resource settings.
We identified high antimicrobial usage and high antimicrobial resistance in children hospitalized with bloody and/or mucoid bacteria-associated diarrhea. There was no clinical benefit of antimicrobial therapy in children with diarrhea; adequately powered randomized controlled trials are required.
Nontyphoidal Salmonella (NTS) are among the most common aetiological agents of diarrhoeal diseases worldwide and have become the most commonly detected bacterial pathogen in children hospitalised with diarrhoea in Vietnam. Aiming to better understand the epidemiology, serovar distribution, antimicrobial resistance (AMR), and clinical manifestation of NTS gastroenteritis in Vietnam, we conducted a clinical genomics investigation of NTS isolated from diarrheal children admitted to one of three tertiary hospitals in Ho Chi Minh City. Between May 2014 and April 2016, 3,166 children hospitalized with dysentery were recruited into the study; 478 (∼15%) children were found to be infected with NTS by stool culture. Molecular serotyping of the 450 generated genomes identified a diverse collection of serogroups (B, C1, C2-C3, D1, E1, G, I, K, N, O, Q); however, S. Typhimurium was the most predominant serovar, accounting for 41.8% (188/450) of NTS isolates. We observed a high prevalence of AMR to first line treatments recommended by WHO and more than half (53.8%, 242/450) of NTS isolates were multi-drug resistant (MDR; resistant to ≥3 antimicrobial classes). AMR gene detection positively correlated with phenotypic AMR testing, and resistance to empirical antimicrobials was associated with a significantly longer hospitalization (0.91 days, p=0.04). Our work shows that genome sequencing is a powerful epidemiological tool to characterize the serovar diversity and AMR profiles in NTS. We propose a revaluation of empirical antimicrobials for dysenteric diarrhoea and endorse the use of whole genome sequencing for sustained surveillance of NTS internationally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.