In this work, we report on the layered deposition of few-layer tin disulfide (SnS 2 ) using atomic layer deposition (ALD). By varying the ALD cycles it was possible to deposit poly-crystalline SnS 2 with small variation in layer numbers. Based on the ALD technique, we developed the process technology growing few-layer crystalline SnS 2 film (3-6 layers) and we investigated their electrical properties by fabricating bottom-gated thin film transistors using the ALD SnS 2 as the transport channel. SnS 2 devices showed typical n-type characteristic with on/off current ratio of ∼8.32×10 6 , threshold voltage of ∼2 V, and a subthreshold swing value of 830 mV decade −1 for the 6 layers SnS 2 . The developed SnS 2 ALD technique may aid the realization of two-dimensional SnS 2 based flexible and wearable devices.
In this article, we report on a highly sensitive tactile shear sensor that was able to detect minute levels of shear and surface slip. The sensor consists of a suspended elastomer diaphragm with a top ridge structure, a graphene layer underneath, and a bottom substrate with multiple spatially digitized contact electrodes. When shear is applied to the top ridge structure, it creates torque and deflects the elastomer downwards. Then, the graphene electrode makes contact with the bottom spatially digitized electrodes completing a circuit producing output currents depending on the number of electrodes making contact. The tactile shear sensor was able to detect shear forces as small as 6 μN, detect shear direction, and also distinguish surface friction and roughness differences of shearing objects. We also succeeded in detecting the contact slip motion of a single thread demonstrating possible applications in future robotic fingers and remote surgical tools.
In this article, we report on a biomimetic tactile sensor that has a surface kinetic interface (SKIN) that imitates human epidermal fingerprint ridges and the epidermis. The SKIN is composed of a bilayer polymer structure with different elastic moduli. We improved the tactile sensitivity of the SKIN by using a hard epidermal fingerprint ridge and a soft epidermal board. We also evaluated the effectiveness of the SKIN layer in shear transfer characteristics while varying the elasticity and geometrical factors of the epidermal fingerprint ridges and the epidermal board. The biomimetic tactile sensor with the SKIN layer showed a detection capability for surface structures under 100 μm with only 20-μm height differences. Our sensor could distinguish various textures that can be easily accessed in everyday life, demonstrating that the sensor may be used for texture recognition in future artificial and robotic fingers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.