Abstract. The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EAR-LINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years.Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs.Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration.Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite community, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observing system.
Abstract. The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar Polly XT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional nearrange receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24/7 monitoring of the atmospheric state with Polly XT .
[1] A combined lidar-photometer method that permits the retrieval of vertical profiles of ash and non-ash (fine-mode) particle mass concentrations is presented. By using a polarization lidar, the contributions of non-ash and ash particles to total particle backscattering and extinction are separated. Sun photometer measurements of the ratio of particle volume concentration to particle optical thickness (AOT) for fine and coarse mode are then used to convert the non-ash and ash extinction coefficients into respective fine-mode and ash particle mass concentrations. The method is applied to European Aerosol Research Lidar Network (EARLINET) and Aerosol Robotic Network (AERONET) Sun photometer observations of volcanic aerosol layers at Cabauw, Netherlands, and Hamburg, Munich, and Leipzig, Germany, after the strong eruptions of the Icelandic Eyjafjallajökull volcano in April and May 2010. A consistent picture in terms of photometer-derived fine-and coarse-mode AOTs and lidar-derived non-ash and ash extinction profiles is found. The good agreement between the fine-to coarse-mode AOT ratio and non-ash to ash AOT ratio (<10% difference) in several cases corroborates the usefulness of the new retrieval technique. The main phases of the evolution of the volcanic aerosol layers over central Europe from 16 April to 17 May 2010 are characterized in terms of optical properties and mass concentrations of fine fraction and ash particles. Maximum coarse-mode 500 nm AOTs were of the order of 1.0-1.2. Ash concentrations and column mass loads reached maximum values around 1500 mg/m 3 and 1750 mg/m 2 , respectively, on 16-17 April 2010. In May 2010, the maximum ash loads were lower by at least 50%. A critical aspect of the entire retrieval scheme is the high uncertainty in the mass-to-extinction conversion for fresh volcanic plumes with an unknown concentration of particles with radii >15 mm.Citation: Ansmann, A., et al. (2011), Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010,
[1] The spread of mineral particles over southwestern, western, and central Europe resulting from a strong Saharan dust outbreak in October 2001 was observed at 10 stations of the European Aerosol Research Lidar Network (EARLINET). For the first time, an optically dense desert dust plume over Europe was characterized coherently with high vertical resolution on a continental scale. The main layer was located above the boundary layer (above 1-km height above sea level (asl)) up to 3-5-km height, and traces of dust particles reached heights of 7-8 km. The particle optical depth typically ranged from 0.1 to 0.5 above 1-km height asl at the wavelength of 532 nm, and maximum values close to 0.8 were found over northern Germany. The lidar observations are in qualitative agreement with values of optical depth derived from Total Ozone Mapping Spectrometer (TOMS) data. Ten-day backward trajectories clearly indicated the Sahara as the source region of the particles and revealed that the dust layer observed, e.g., over Belsk, Poland, crossed the EARLINET site Aberystwyth, UK, and southern Scandinavia 24-48 hours before. Lidar-derived particle depolarization ratios, backscatter-and extinction-related Å ngström exponents, and extinction-to-backscatter ratios mainly ranged from 15 to 25%, À0.5 to 0.5, and 40-80 sr, respectively, within the lofted dust plumes. A few atmospheric model calculations are presented showing the dust concentration over Europe. The simulations were found to be consistent with the network observations.
Clouds over the ocean, particularly throughout the tropics, are poorly understood and drive much of the uncertainty in model-based projections of climate change. In early 2010, the Max Planck Institute for Meteorology and the Caribbean Institute for Meteorology and Hydrology established the Barbados Cloud Observatory (BCO) on the windward edge of Barbados. At 13°N the BCO samples the seasonal migration of the intertropical convergence zone (ITCZ), from the well-developed winter trades dominated by shallow cumulus to the transition to deep convection as the ITCZ migrates northward during boreal summer. The BCO is also well situated to observe the remote meteorological impact of Saharan dust and biomass burning. In its first six years of operation, and through complementary intensive observing periods using the German High Altitude and Long Range Research Aircraft (HALO), the BCO has become a cornerstone of efforts to understand the relationship between cloudiness, circulation, and climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.