The study reveals that for future research on N2O isotopocules, standardisation against N2O reference material is essential to improve interlaboratory compatibility. For atmospheric monitoring activities, we suggest N2O in whole air as a unifying scale anchor.
Nitrous oxide (N 2 O) and nitric oxide (NO) are atmospheric trace gases that contribute to climate change and affect stratospheric and ground-level ozone concentrations. Ammonia oxidizing bacteria (AOB) and archaea (AOA) are key players in the nitrogen cycle and major producers of N 2 O and NO globally. However, nothing is known about N 2 O and NO production by the recently discovered and widely distributed complete ammonia oxidizers (comammox). Here, we show that the comammox bacterium Nitrospira inopinata is sensitive to inhibition by an NO scavenger, cannot denitrify to N 2 O, and emits N 2 O at levels that are comparable to AOA but much lower than AOB. Furthermore, we demonstrate that N 2 O formed by N. inopinata formed under varying oxygen regimes originates from abiotic conversion of hydroxylamine. Our findings indicate that comammox microbes may produce less N 2 O during nitrification than AOB.
Climate reconstructions using stable isotopes from tree-rings are steadily increasing. The investigations concentrate mostly on cellulose due to its high stability. In recent years the available amount of cellulose has steadily decreased, mainly because micro-structures of plant material have had to be analyzed. Today, the amounts of cellulose being studied are frequently in the milligram and often in the microgram range. Consequently, homogeneity problems with regard to the stable isotopes of carbon and oxygen from cellulose have occurred and these have called for new methods in the preparation of cellulose for reliable isotope analyses. Three different methods were tested for preparing isotopically homogenous cellulose, namely mechanical grinding, freezing by liquid nitrogen with subsequent milling and ultrasonic breaking of cellulose fibres. The best precision of isotope data was achieved by freeze-milling and ultrasonic breaking. However, equipment for freeze-milling is expensive and the procedure is labour-intensive. Mechanical grinding resulted in a rather high loss of material and it is also labour-intensive. The use of ultrasound for breaking cellulose fibres proved to be the best method in terms of rapidity of sample throughput, avoidance of sample loss, precision of isotope results, ease of handling, and cost.
Plants like winter wheat are known for their insufficient N uptake between sowing and the following growing season. Especially after N-rich crops like oilseed rape or field bean, nitrogen retention of the available soil N can be poor, and the risk of contamination of the hydrosphere with nitrate (NO3-) and the atmosphere with nitrous oxide (N2O) is high. Therefore, novel strategies are needed to preserve these unused N resources for subsequent agricultural production. High organic carbon soil amendments (HCA) like wheat straw promote microbial N immobilization by stimulating microbes to take up N from soil. In order to test the suitability of different HCA for immobilization of excess N, we conducted a laboratory incubation experiment with soil columns, each containing 8 kg of sandy loam of an agricultural Ap horizon. We created a scenario with high soil mineral N content by adding 150 kg NH4+-N ha-1 to soil that received either wheat straw, spruce sawdust or lignin at a rate of 4.5 t C ha-1, or no HCA as control. Wheat straw turned out to be suitable for fast immobilization of excess N in the form of microbial biomass N (up to 42 kg N ha-1), followed by sawdust. However, under the experimental conditions this effect weakened over a few weeks, finally ranging between 8 and 15 kg N ha-1 immobilized in microbial biomass in the spruce sawdust and wheat straw treatment, respectively. Pure lignin did not stimulate microbial N immobilization. We also revealed that N immobilization by the remaining straw and sawdust HCA material in the soil had a greater importance for storage of excess N (on average 24 kg N ha-1) than microbial N immobilization over the 4 months. N fertilization and HCA influenced the abundance of ammonia oxidizing bacteria and archaea as the key players for nitrification, as well as the abundance of denitrifiers. Soil with spruce sawdust emitted more N2O compared to soil with wheat straw, which in relation released more CO2, resulting in a comparable overall global warming potential. However, this was counterbalanced by advantages like N immobilization and mitigation of potential NO3- losses.
[1] A chamber study was carried out to investigate the stable carbon isotopic composition (d 13 C) of secondary organic aerosol (SOA) formed from ozonolysis of b-pinene. b-Pinene (600 ppb) with a known d 13 C value (À30.1%) and 500 ppb ozone were injected into the chamber in the absence of light and the resulting SOA was collected on preheated quartz fiber filters. Furthermore, d 13 C values of the gas-phase b-pinene and one of its oxidation products, nopinone, were measured using a gas chromatograph coupled to an isotope ratio mass spectrometer (GC-IRMS). b-Pinene was progressively enriched with the heavy carbon isotope due to the kinetic isotope effect (KIE). The KIE of the reaction of b-pinene with ozone was measured to be 1.0026 ( O 3 e 2.6 ± 1.5%). The d 13 C value of total secondary organic aerosol was very similar to that of its precursor (average = À29.6 ± 0.2%) independent of experiment time. Nopinone, one of the major oxidation products of b-pinene, was found in both the gas and aerosol phases. The gas-phase nopinone was heavier than the initial b-pinene by 1.3% but lighter than the corresponding aerosol-phase nopinone. On average, the gas-phase nopinone was lighter by 2.3% than the corresponding aerosol-phase nopinone. The second product found in the SOA was detected as acetone, but it desorbed from the filter at a higher temperature than nopinone, which indicates that it is a pyrolysis product. The acetone showed a much lower d 13 C (À36.6%) compared to the initial b-pinene d 13 C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.