MafA is a transcription factor that binds to the promoter in the insulin gene and has been postulated to regulate insulin transcription in response to serum glucose levels, but there is no current in vivo evidence to support this hypothesis. To analyze the role of MafA in insulin transcription and glucose homeostasis in vivo, we generated MafA-deficient mice. Here we report that MafA mutant mice display intolerance to glucose and develop diabetes mellitus. Detailed analyses revealed that glucose-, arginine-, or KCl-stimulated insulin secretion from pancreatic  cells is severely impaired, although insulin content per se is not significantly affected. MafA-deficient mice also display age-dependent pancreatic islet abnormalities. Further analysis revealed that insulin 1, insulin 2, Pdx1, Beta2, and Glut-2 transcripts are diminished in MafA-deficient mice. These results show that MafA is a key regulator of glucose-stimulated insulin secretion in vivo.Insulin is the only polypeptide hormone that is essential for the regulation of blood glucose levels and is synthesized exclusively in  cells of the islets of Langerhans in the pancreas. The molecular mechanisms that control -cell-specific insulin gene transcription are well characterized. Three conserved cis-regulatory elements within the promoter, E1, A3, and RIPE3b/ C1, respectively, appear to be indispensable for proper insulin gene regulation (22,25). Islet-restricted transcription factors Beta2/NeuroD and Pdx1 bind to the E1 and A3 elements in vitro. Gene disruption experiments in mice have revealed that both Beta2 and Pdx1 play critical roles in insulin gene regulation as well as in islet development and function (1,8,21). Furthermore, mutations in both the Beta2 and Pdx1 genes have been identified within populations of patients with type II diabetes (18,29,30).The third regulatory element, RIPE3b/C1, has also been shown to play a critical role in -cell-specific insulin gene transcription as well as in glucose-regulated expression. Previous studies identified a pancreatic -cell-restricted factor, called the RIPE3b1 activator, that is enriched in response to glucose in pancreatic -cell nuclear extracts. Very recently, four groups reported that the RIPE3b1 activator is a member of the Maf family of transcription factors, MafA (10,12,20,26). The large Maf proteins, MafA/L-Maf/SMaf1 (2, 9, 24), MafB (11), c-Maf (23), and Nrl (31), each contain a basic motif followed by a leucine zipper, and all four family members harbor acidic domains that act as transcriptional activation domains. Although a role for MafA in insulin gene regulation was hypothesized, in vivo tests of the hypothesis have not been reported. To elucidate MafA function in insulin gene regulation, we generated MafA-deficient mice. MATERIALS AND METHODSTargeted disruption of the mafA gene. mafA genomic clones were isolated from a 129/SvJ genomic library (Stratagene) using a partial mouse MafA cDNA as a probe. The targeting vector was constructed with the bacterial lacZ gene containing a nuclear loca...
The transcription factor Nrf2 regulates the expression of antioxidant genes. Hyperglycemia‐induced oxidative stress is involved in the pathogenesis of diabetes and its complications. However, little is known about the protective role of Nrf2 in diabetes. To gain insight into the protective role of Nrf2 in diabetes we treated Nrf2 knockout (Nrf2 KO) mice with streptozotocin (STZ). The STZ Nrf2 KO mice did not develop renal hyperfiltration, which was observed in the STZ‐treated wild‐type (STZ WT) mice, but renal function gradually deteriorated over the 10‐week observation period. Urinary excretion of nitric oxide metabolites and the occurrence of 8‐nitroguanosine, which was detected in glomerular lesions, were increased in STZ Nrf2 KO mice during the early stages after treatment. In vivo electron paramagnetic resonance analysis revealed an accelerated rate of decay of the 3‐carbamoyl‐2,2,5,5‐tetramethylpyrrolidine‐1‐oxyl spin probe signal in STZ Nrf2 KO mice. The addition of superoxide dismutase prolonged the half‐life of the signal, which suggested that increased oxygen radical formation occurred in the STZ Nrf2 KO mice. These results suggested that hyperglycemia increased oxidative and nitrosative stress and accelerated renal injury in the Nrf2 KO mice and that Nrf2 serves as a defense factor against some diabetic complications.
c-Maf translocation or overexpression has been observed in human multiple myeloma. Although c-maf might function as an oncogene in multiple myeloma, a role for this gene in other cancers has not been shown. In this study, we have found that mice transgenic for c-Maf whose expression was direct to the T-cell compartment developed T-cell lymphoma. Moreover, we showed that cyclin D2, integrin B 7 , and ARK5 were upregulated in c-Maf transgenic lymphoma cells. Furthermore, 60% of human T-cell lymphomas (11 of 18 cases), classified as angioimmunoblastic T-cell lymphoma, were found to express c-Maf. These results suggest that c-Maf might cause a type of T-cell lymphoma in both mice and humans and that ARK5, in addition to cyclin D2 and integrin B 7 , might be downstream target genes of c-Maf leading to malignant transformation.
Contact dermatitis in humans and contact hypersensitivity (CHS) in animal models are delayed-type hypersensitivity reactions mediated by hapten-specific T cells. Recently, it has become clear that both CD4+ Th1 and CD8+ type 1 cytotoxic T (Tc1) cells can act as effectors in CHS reactions. T-bet has been demonstrated to play an important role in Th1 and Tc1 cell differentiation, but little is known about its contribution to CHS. In the present study, we used C57BL/6 mice transgenic (Tg) for T-bet to address this issue. These Tg mice, which overexpressed T-bet in their T lymphocytes, developed dermatitis characterized by swollen, flaky, and scaly skin in regions without body hair. Skin histology showed epidermal hyperkeratosis, neutrophil, and lymphocyte infiltration similar to that seen in contact dermatitis. T-bet overexpression in Tg mice led to elevated Th1 Ig (IgG2a) and decreased Th2 Ig (IgG1) production. Intracellular cytokine analyses demonstrated that IFN-γ was increased in both Th1 and Tc1 cells. Furthermore, Tg mice had hypersensitive responses to 2,4-dinitrofluorobenzene, which is used for CHS induction. These results suggest that the level of expression of T-bet might play an important role in the development of contact dermatitis and that these Tg mice should be a useful model for contact dermatitis.
Abstract. A T helper 1 (Th1)/Th2 imbalance is thought to contribute to the pathogenesis of autoimmune diseases. The differentiation of T cells into Th1 or Th2 subtypes is under the regulation of several transcription factors. Among these, transcription factor GATA-3 is thought to play an indispensable role in the development of T cells and the differentiation of Th2 cells. To examine how a Th1/Th2 imbalance affects the development of autoimmune disease, GATA-3 was overexpressed in the T lymphocytes of C57BL/6 ϫ BXSB/MpJ-Yaa F 1 (Yaa) mice. Yaa mice developed autoimmune nephritis similarly to BXSB/MpJ-Yaa mice, which are commonly used as a model for Th1-dominant murine lupus. GATA-3 overexpression in T cells improved the 50% mortality incidence time for GATA-3-transgenic Yaa mice (41.6 wk), compared with Yaa mice (30.9 wk), and reduced proteinuria, serum creatinine levels, and the severity of glomerulonephritis in GATA-3-transgenic Yaa mice. GATA-3 overexpression in Yaa mice led to simultaneously elevated Th2 Ig (IgG1) and decreased Th1 Ig (IgG2a and IgG3) production and serum IFN-␥ levels. Although IL-4 production remained unchanged, intracellular cytokine analyses demonstrated that IL-5 was induced and IFN-␥ was suppressed in stimulated T cells from the GATA-3-transgenic Yaa mice. These results indicated that abundant GATA-3 was unable to stimulate complete differentiation of Th2 cells but did counteract the dominance of Th1 cells and alleviated the disease severity in Yaa mice. These data suggest that transcriptional regulation therapy may have potential as an effective strategy for treating autoimmune glomerulonephritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.