Impervious surfaces are commonly acknowledged as major components of human settlements. The expansion of impervious surfaces could lead to a series of human−dominated environmental and ecological issues. Tracing impervious surface dynamics at a finer temporal−spatial scale is a critical way to better understand the increasingly human-dominated system of Earth. In this study, we put forward a new scheme to conduct long-term monitoring of impervious−relevant land disturbances using high frequency Landsat archives and the Google Earth Engine (GEE). First, the developed region was identified using a classification-based approach. Then, the GEE-version LandTrendr (Landsat-based detection of Trends in Disturbance and Recovery) was used to detect land disturbances, characterizing the conversion from vegetation to impervious surfaces. Finally, the actual disturbance areas within the developed regions were derived and quantitatively evaluated. A case study was conducted to detect impervious surface dynamics in Nanjing, China, from 1988 to 2018. Results show that our scheme can efficiently monitor impervious surface dynamics at yearly intervals with good accuracy. The overall accuracy (OA) of the classification results for 1988 and 2018 are 95.86% and 94.14%. Based on temporal−spatial accuracy assessments of the final detection result, the temporal accuracy is 90.75%, and the average detection time deviation is −1.28 a. The OA, precision, and recall of the sampling inspection, respectively, are 84.34%, 85.43%, and 96.37%. This scheme provides new insights into capturing the expansion of impervious−relevant land disturbances with high frequency Landsat archives in an efficient way.
The rapid advances in proteomic analyses coupled with the completion of multiple genomes have led to an increased demand for determining protein functions. The first step is classification or prediction into families. A method was developed for the prediction of protein family based only on protein sequence using support vector machine (SVM) models. In these models, the amino acids were classified into three categories (apolar, polar, and charged). Consecutive fragments ranging from one to five were annotated by amino acid type to define the protein features of each protein. SVM models were constructed based on the protein features of a training set of proteins and then examined with an independent set of proteins. The approach was tested for 20 protein families from the iProClass database of Protein Information Resources (PIR). For two-class SVM models, an average prediction accuracy of 0.9985 was achieved, while for multi-class SVM models an accuracy of 0.9941 was achieved. This study demonstrates that SVM based methods can accurately recognize and predict the protein family to which a sequence belongs based solely on its primary amino acid sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.