Incubation of a 1 : 1 mixture of b-(L-a-aminoadipoyl)-L-cysteinybvalinet (L,L,D-ACV) and L , L , D -A [ ~, ~-~H ~] C V with a cell-free extract of isopenicillin N synthetase from Cephalosporium acremonium results in preferential conversion of the fully protiated substrate into isopenicillin N; alternatively a similar experiment with a 1 : 1 mixture of L,L,D,-ACV and L,L,D-AC[~-~H]V gave isopenicillin N without isotopic discrimination between the two substrates.
Isopenicillin N synthetase was extracted from Cephalosporium acremonium and purified about 200-fold. The product showed one major protein band, coinciding with synthetase activity, when subjected to electrophoresis in polyacrylamide gel. An isopenicillin N synthetase from Penicillium chrysogenum was purified about 70-fold by similar procedures. The two enzymes resemble each other closely in their Mr, in their mobility on electrophoresis in polyacrylamide gel and in their requirement for Fe2+ and ascorbate for maximum activity. Preliminary experiments have shown that a similar isopenicillin N synthetase can be extracted from Streptomyces clavuligerus.
Deacetoxycephalosporin C synthetase (expandase) from Cephalosporium acremonium (Acremonium chrysogenum) was purified to near homogeneity as judged by SDS/polyacrylamide-gel electrophoresis. The enzyme (Mr about 40,000) exhibited a pH optimum around 7.5. It required 2-oxoglutarate (Km 0.04 mM), Fe2+ and O2 as cofactors, and ascorbate and dithiothreitol were necessary for maximum activity. It was stable for over 4 weeks at -70 degrees C in the presence of 1 mM-dithiothreitol. Activity was inhibited by the thiol-quenching reagent N-ethylmaleimide, the metal-ion-chelating reagent bathophenanthroline, and NH4HCO3. The highly purified enzyme also showed deacetoxycephalosporin C hydroxylase (deacetylcephalosporin C synthetase) activity, indicating that both expandase and hydroxylase activities are properties of a single protein. These activities could not be separated by ion-exchange, dye-ligand, gel-filtration or hydrophobic chromatography. A beta-sulphoxide and a 3 beta-methylene hydroxy analogue of penicillin N were synthesized to test as potential intermediates in the ring-expansion reaction, Neither compound was a substrate for the enzyme. A synthetic analogue in which the 3 beta-methyl group and the 2-hydrogen atom of penicillin N were replaced by a cyclopropane ring was not a substrate but was a reversible inhibitor of the enzyme.
Cyclisation of the cyclopropyl-containing substrates ( 6 ) and ( 7) by the enzyme isopenicillin N synthetase (IPNS) gave the bicyclic (3-lactams (9) and (lo), respectively; these products support the hypothesis that a carbon-centred free radical or equivalent iron-carbon bonded intermediate is involved in the carbon-sulphur bond formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.