Three-dimensional (3D) Dirac semimetals, which possess 3D linear dispersion in the electronic structure as a bulk analogue of graphene, have lately generated widespread interest in both materials science and condensed matter physics. Recently, crystalline Cd3As2 has been proposed and proved to be a 3D Dirac semimetal that can survive in the atmosphere. Here, by using point contact spectroscopy measurements, we observe exotic superconductivity around the point contact region on the surface of Cd3As2 crystals. The zero-bias conductance peak (ZBCP) and double conductance peaks (DCPs) symmetric around zero bias suggest p-wave-like unconventional superconductivity. Considering the topological properties of 3D Dirac semimetals, our findings may indicate that Cd3As2 crystals under certain conditions could be topological superconductors, which are predicted to support Majorana zero modes or gapless Majorana edge/surface modes in the boundary depending on the dimensionality of the material.
Three-dimensional topological Dirac semimetals have a linear dispersion in 3D momentum space and are viewed as the 3D analogues of graphene. Here, we report angle-dependent magnetotransport on the newly revealed Cd 3 As 2 single crystals and clearly show how the Fermi surface evolves with crystallographic orientations. Remarkably, when the magnetic field lies in the [112] or ½441 axis, magnetoresistance oscillations with only single period are present. However, the oscillation shows double periods when the field is applied along the ½110 direction. Moreover, aligning the magnetic field at certain directions also gives rise to double period oscillations. We attribute the observed anomalous oscillation behavior to the sophisticated geometry of Fermi surface and illustrate a complete 3D Fermi surface with two nested anisotropic ellipsoids around the Dirac points. Additionally, a submillimeter mean-free path at 6 K is found in Cd 3 As 2 crystals, indicating ballistic transport in this material. By measuring the magnetoresistance up to 60 T, we reach the quantum limit (n ¼ 1 Landau level) at about 43 T. These results improve the knowledge of the Dirac semimetal material Cd 3 As 2 and also pave the way for proposing new electronic applications based on 3D Dirac materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.