Development of efficient and robust electrocatalysts is critical for practical fuel cells. We report one-dimensional bunched platinum-nickel (Pt-Ni) alloy nanocages with a Pt-skin structure for the oxygen reduction reaction that display high mass activity (3.52 amperes per milligram platinum) and specific activity (5.16 milliamperes per square centimeter platinum), or nearly 17 and 14 times higher as compared with a commercial platinum on carbon (Pt/C) catalyst. The catalyst exhibits high stability with negligible activity decay after 50,000 cycles. Both the experimental results and theoretical calculations reveal the existence of fewer strongly bonded platinum-oxygen (Pt-O) sites induced by the strain and ligand effects. Moreover, the fuel cell assembled by this catalyst delivers a current density of 1.5 amperes per square centimeter at 0.6 volts and can operate steadily for at least 180 hours.
Electrochemical conversion of carbon dioxide (CO 2 ) into high-value chemical products has become a dramatic research area because of the efficient exploitation of carbon resources and simultaneous reduction of atmospheric CO 2 concentration. Herein, we report the bismuth-based catalyst in the efficient electroconversion of CO 2 for the formation of formate with a maximum Faradaic efficiency of 91% and partial current density of ∼8 mA cm −2 at −0.9 V vs RHE. Experimental and theoretical results show that the bismuth−oxygen structure of bismuth oxides is beneficial for a higher adsorption of CO 2 and the ratedetermining route switching from the initial fast pre-equilibrium of electron transfer process to the subsequent hydrogenation step, accompanied by a lower free energy of intermediate. This work may offer valuable insights into crystal structure engineering to achieve efficient electrocatalysts for selective CO 2 reduction toward generation of valuable products.
Nickel–iron composites are efficient in catalyzing oxygen evolution. Here, we develop a microorganism corrosion approach to construct nickel–iron hydroxides. The anaerobic sulfate-reducing bacteria, using sulfate as the electron acceptor, play a significant role in the formation of iron sulfide decorated nickel–iron hydroxides, which exhibit excellent electrocatalytic performance for oxygen evolution. Experimental and theoretical investigations suggest that the synergistic effect between oxyhydroxides and sulfide species accounts for the high activity. This microorganism corrosion strategy not only provides efficient candidate electrocatalysts but also bridges traditional corrosion engineering and emerging electrochemical energy technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.