Mucin 1 (MUC1) is a tumor antigen, and the most important epitopes that can induce cytotoxic T lymphocytes (CTL) reside in the variable-number tandem repeats (VNTR). Heat shock protein (HSP) complexes isolated from tumors have been shown to induce specific anti-tumor immunity. HSP alone can also induce nonspecific immunity. To explore the possibility to utilize the specific anti-tumor immunity induced by MUC1 VNTR and the nonspecific immunity induced by HSP, we constructed a recombinant protein (HSP65-MUC1) by fusing Bacillus Calmette-GuØrin-derived HSP65 with the MUC1 VNTR peptide and tested its ability to induce anti-tumor activities in a tumor challenge model. The growth of MUC1-expressing tumors was significantly inhibited in mice immunized with HSP65-MUC1, both before and after tumor challenge. A much larger percentage of immunized mice survived the tumor challenge than nonimmunized mice. Correlating with the anti-tumor activity, HSP65-MUC1 was shown to induce MUC1-specific CTL as well as nonspecific anti-tumor immunity. In the human system, HSP65-MUC1-loaded human DC induced the generation of autologous MUC1-specific CTL in vitro. These results suggest that exogenously applied HSP65-MUC1 may be used to treat MUC1 tumors by inducing the epitope-specific CTL as well as nonspecific anti-tumor responses mediated by the HSP part of the fusion protein.
MF59 is an oil-in-water emulsion adjuvant approved for influenza vaccines for human use in Europe. Due to its Th2 inducing properties, MF59 is seldom tested for cancer vaccines. In this study, MF59 formulated with a C-type CpG oligodeoxynucleotide (YW002) was tested for its Th1 adjuvant activity to induce immune responses to HSP65-MUC1, a recombinant fusion protein incorporating a mycobacterial heat shock protein (HSP65) and mucin 1, cell surface associated (MUC1) derived peptide. Combination of YW002 with MF59 (MF59-YW002) could confer a potent Th1 biasing property to the adjuvant, which enhanced the immunogenicity of HSP65-MUC1 to induce significantly higher levels of specific IgG2c, increased IFN-γ mRNA expression in splenocytes and the generation of antigen-specific cytotoxic T lymphocytes in mice. When prophylactically applied, MF59-YW002 adjuvant containing HSP65-MUC1 inhibited the growth of MUC1+ B16 melanoma and prolonged the survival of tumor-bearing mice. In contrast, adjuvant containing MF59 with HSP65-MUC1 in the absence of YW002, promoted the growth of MUC1+ B16 melanoma in mice. These results suggest that MF59 plus CpG oligodeoxynucleotide might be developed as an efficient adjuvant for tumor vaccines against melanoma, and possibly other tumors.
To develop effective anti-lung cancer vaccines, we directly mixed mycobacterial heat shock protein 65 (MHSP65) and tumor cell lysate (TCL) from Lewis lung cancer cells in vitro and tested its efficacy on stimulating anti-tumor immunity. Our results showed that MHSP65-TCL immunization significantly inhibited the growth of lung cancer in mice and prolonged the survival of lung cancer bearing mice. In vivo and in vitro data suggest that MHSP65-TCL could induce specific CTL responses and non-specific immunity, both of which could contribute to the tumor inhibition. Thus, this report provides an easy approach to prepare an efficient TCL based tumor vaccine.
Tumor cell lysate (TCL) has an advantage of containing an extensive repertoire of tumor antigens but requires proper adjuvants to enhance its immunogenicity when used as an efficient tumor vaccine. Mycobacterium tuberculosis-derived heat shock protein 70 (TBHsp70) has been shown to assist crosspresentation of exogenously applied tumor antigens and activate innate immunity against tumor cells. In this study, TBHsp70-B16TCL, a preparation generated by mixing recombinant TBHsp70 and TCL of B16 melanoma cells directly, was tested for its immunogenicity as a tumor vaccine. The TBHsp70-B16TCL induced a significant inhibition of the growth and metastasis of B16 melanoma in mice and prolonged the survival of B16 melanoma-bearing mice. The inhibition was correlated with the specific immune responses induced by TBHsp70-B16TCL. The data suggest that recombinant TBHsp70-adjuvanted TCL might be developed into effective tumor vaccines for melanomas and possibly for other tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.