The leaf serves as an important assimilation organ of plants, and the anatomical structure of leaves can reflect the adaptability of the plant to the environment to a certain extent. The current study aimed to cultivate superior local cultivars, and 35 healthy individual plants were selected from the Camellia oleifera germplasm resource nursery for a comparative study of the leaf structure. In July 2019, the leaves were collected from 35 selected healthy C. oleifera plants, and the leaf structure was observed by using the paraffin section method. Healthy individual plants were screened using variance analysis, correlation analysis and cluster analysis. The representative indices were selected according to the cluster membership, correlation indices and coefficient of variation (C/V) for a comprehensive evaluation of drought resistance via the membership function. There were extremely significant differences in 11 indices of leaf structure for these 35 healthy plants. C18 had the greatest leaf thickness, C7 the largest spongy tissue, and C38 the largest ratio of palisade tissue thickness to spongy tissue thickness (P/S). The clustering results of the healthy individual plants differed significantly. The membership function showed that the drought resistance of 35 C. oleifera plants was divided into five categories. C18 had very strong drought resistance, and C3, C7 and C40 had strong drought resistance. There were significant differences in terms of the upper epidermis, P/S ratio and spongy tissue among the C. oleifera plants. C18, C3, C7 and C40 exhibited satisfactory drought resistance. Although C39 and C26 had moderate drought resistance, their P/S ratios were high, which might be used to cultivate high-yield and drought-resistant C. oleifera varieties. The leaf P/S ratio of C. oleifera from low-hot valley areas was high. Among various leaf structures, spongy tissue, upper epidermis, P/S ratio and cuticle constitute the drought resistance evaluation indices for C. oleifera grown in low-hot valley areas.
Ketogulonicigenium vulgare is characterized by the efficient production of 2KGA from L-sorbose. Ketogulonicigenium vulgare Y25 is known as a 2-keto-L-gulonic acid-producing strain in the vitamin C industry. Here we report the finished, annotated genome sequence of Ketogulonicigenium vulgare Y25.Ketogulonicigenium vulgare Y25 is used in the production of vitamin C, which is responsible for the conversion reaction of L-sorbose to L-ketogulonic acid in mixed culture fermentation with Bacillus species 8. The entire genome of Ketogulonicigenium vulgare Y25 was sequenced to elucidate the metabolic pathway of sorbose and to obtained detailed insights into the growth potential of the organism.The complete genome sequence of Ketogulonicigenium vulgare Y25 was determined by the Beijing Genome Institute (Shenjun, China) using Solexa technology. A total of 221 million high-quality base pairs, giving 67.2-fold coverage of the genome, were assembled into 36 contigs using by SOAP software (http://soap.genomics.org.cn) 7. Then, the contigs were joined into 14 scaffolds using paired-end information. Gaps between contigs were closed by custom primer walks or by PCR amplification followed by DNA sequencing.The genome of Ketogulonicigenium vulgare Y25 consists of a circular chromosome and two plasmids. The chromosome is composed of 2,776,084 bp, with a GϩC content of 61.72%. One plasmid contains 268,675 bp, with a GϩC content of 61.35%, and the other contains 243,645 bp, with a GϩC content of 62.63%. Hence, the total size of the genome is 3,288,404 bp and the average GϩC content is 61.76%. There are a total of 3,290 putative open reading frames (2,807 [chromosome], 256 [pYP1], and 227 [pYP2]) using Glimmer, giving a coding intensity of 91.05%. A total of 59 tRNA genes for all 20 amino acids but tyrosine and five 16S-23S-5S rRNA operons were identified.Four genes encoding sorbose dehydrogenase were found in the chromosome. All of them were cloned and characterized. The result indicated that every one could transform L-sorbose into 2-keto-gulonic acid and required pyrroloquinoline quinine for the prosthetic groups in vitro (unpublished data). Sequence alignment analysis showed that they hadhigh homology in nucleic acid and amino acid sequences 1, 4, 9, and 10. It is estimated that multiple copies of the sorbose dehydrogenase gene can be attributed to highly efficient conversion of sorbose to 2-keto-gulonic acid. A pqqABCDE cluster of coenzyme PQQ biosynthesis has also been isolated. It shows the same arrangement of pqq genes as that in other species: a small pqqA gene with its own promoter followed by an operon with the other four genes2, 3, 5, 6. In addition, several genes encoding sorbitol dehydrogenase, sorbose reductase, sorbsone dehydrogenase, etc., were annotated in the genome.The Y25 genome sequence and its curated annotation are important assets to better understand the physiology and metabolic potential of Ketogulonicigenium vulgare and will open up new opportunities in the functional genomics of this species.Nucleotide sequ...
BackgroundRandomized controlled trials (RCTs) are not always well reported, especially in terms of their methodological descriptions. This study aimed to investigate the adherence of methodological reporting complying with CONSORT and explore associated trial level variables in the Chinese nursing care field.MethodsIn June 2012, we identified RCTs published in five leading Chinese nursing journals and included trials with details of randomized methods. The quality of methodological reporting was measured through the methods section of the CONSORT checklist and the overall CONSORT methodological items score was calculated and expressed as a percentage. Meanwhile, we hypothesized that some general and methodological characteristics were associated with reporting quality and conducted a regression with these data to explore the correlation. The descriptive and regression statistics were calculated via SPSS 13.0.ResultsIn total, 680 RCTs were included. The overall CONSORT methodological items score was 6.34±0.97 (Mean ± SD). No RCT reported descriptions and changes in “trial design,” changes in “outcomes” and “implementation,” or descriptions of the similarity of interventions for “blinding.” Poor reporting was found in detailing the “settings of participants” (13.1%), “type of randomization sequence generation” (1.8%), calculation methods of “sample size” (0.4%), explanation of any interim analyses and stopping guidelines for “sample size” (0.3%), “allocation concealment mechanism” (0.3%), additional analyses in “statistical methods” (2.1%), and targeted subjects and methods of “blinding” (5.9%). More than 50% of trials described randomization sequence generation, the eligibility criteria of “participants,” “interventions,” and definitions of the “outcomes” and “statistical methods.” The regression analysis found that publication year and ITT analysis were weakly associated with CONSORT score.ConclusionsThe completeness of methodological reporting of RCTs in the Chinese nursing care field is poor, especially with regard to the reporting of trial design, changes in outcomes, sample size calculation, allocation concealment, blinding, and statistical methods.
Male sterility caused by stamen petalody is a key factor for a low fruit set rate and a low yield of Camellia oleifera but can serve as a useful genetic tool because it eliminates the need for artificial emasculation. However, its molecular regulation mechanism still remains unclear. In this study, transcriptome was sequenced and analyzed on two types of bud materials, stamen petalody mutants and normal materials, at six stages of stamen development based on integrated single-molecule real-time (SMRT) technology with unique molecular identifiers (UMI) and RNA-seq technology to identify the hub genes responsible for stamen petalody in C. oleifera. The results show that a large number of alternative splicing events were identified in the transcriptome. A co-expression network analysis of MADSs and all the differentially expressed genes between the mutant stamens and the normal materials showed that four MADS transcription factor genes, CoSEP3.1, CoAGL6, CoSEP3.2, and CoAP3, were predicted to be the hub genes responsible for stamen petalody. Among these four, the expression patterns of CoAGL6 and CoSEP3.2 were consistently high in the mutant samples, but relatively low in the normal samples at six stages, while the patterns of CoSEP3.1 and CoAP3 were initially low in mutants and then were upregulated during development but remained relatively high in the normal materials. Furthermore, the genes with high connectivity to the hub genes showed significantly different expression patterns between the mutant stamens and the normal materials at different stages. qRT-PCR results showed a similar expression pattern of the hub genes in the RNA-seq. These results lay a solid foundation for the directive breeding of C. oleifera varieties and provide references for the genetic breeding of ornamental Camellia varieties.
Petalized anther abortion is an important characteristic of male sterility in plants. The male sterile plants (HB-21) evincing petalized anther abortion previously discovered in a clone population of the Camellia oleifera cultivar Huashuo by our research group were selected as the experimental material in this study. Using plant microscopy and anatomic methods and given the correspondence between external morphology and internal structure, we studied the anatomic characteristics of petalized anther abortion (with a fertile plant as the control group) in various stages, from flower bud differentiation to anther maturity, in hopes of providing a theoretical basis for research on and applications of male sterile C. oleifera plants, a new method for the selection of male sterile C. oleifera cultivars, and improvements in the yield and quality of C. oleifera. In this study, the development of anthers in C. oleifera was divided into 14 stages. Petalized anther abortion in male sterile plants was mainly initiated in the second stage (the stage of sporogenous cells). Either the petalized upper anther parts did not form pollen sacs, or the entire anthers did not form pollen sacs. The lower parts of some anthers could form deformed pollen sacs and develop, and these anthers could be roughly divided into two types: fully and partially petalized anthers. Abnormal callose and the premature degradation of the tapetum occurred in the pollen sacs formed by partially petalized anthers during the development process, resulting in the absence of inclusions in the pollen grains formed. Small quantities of mature pollen grains withered inward from the germinal furrows, exhibiting obvious abortion characteristics. The relative in vitro germination rate of the pollen produced by the partially petalized anthers of sterile plants was 11.20%, and the relative activity of triphenyltetrazolium chloride was 3.24%, while the fully petalized anthers did not generate pollen grains. Either the petalized anthers in male sterile plants did not produce pollen, or the vitality of the small amounts of pollen produced by sterile plants was very low compared with that of fertile plants. Such male sterile plants could be used to select correct clones and have good prospects for application in production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.