Functional disconnectivity during the resting state has been observed in mild traumatic brain injury (mTBI) patients during the acute stage. However, it remains largely unknown whether the abnormalities are related to specific frequency bands of the low-frequency oscillations (LFO). Here, we used the amplitude of low-frequency fluctuations (ALFF) to examine the amplitudes of LFO in different frequency bands (slow-5: 0.01–0.027 Hz; slow-4: 0.027–0.073 Hz; and typical: 0.01–0.08 Hz) in patients with acute mTBI. A total of 24 acute mTBI patients and 24 age-, sex-, and education-matched healthy controls participated in this study. In the typical band, acute mTBI patients showed lower standardized ALFF in the right middle frontal gyrus and higher standardized ALFF in the right lingual/fusiform gyrus and left middle occipital gyrus. Further analyses showed that the difference between groups was concentrated in a narrower (slow-4) frequency band. In the slow-5 band, mTBI patients only exhibited higher standardized ALFF in the occipital areas. No significant correlation between the mini-mental state examination score and the standardized ALFF value was found in any brain region in the three frequency bands. Finally, no significant interaction between frequency bands and groups was found in any brain region. We concluded that the abnormality of spontaneous brain activity in acute mTBI patients existed in the frontal lobe as well as in distributed brain regions associated with integrative, sensory, and emotional roles, and the abnormal spontaneous neuronal activity in different brain regions could be better detected by the slow-4 band. These findings might contribute to a better understanding of local neural psychopathology of acute mTBI. Future studies should take the frequency bands into account when measuring intrinsic brain activity of mTBI patients.
Mild traumatic brain injury (mTBI) is characterized by structural disconnection and large-scale neural network dysfunction in the resting state. However, little is known concerning the intrinsic changes in local spontaneous brain activity in patients with mTBI. The aim of the current study was to assess regional synchronization in acute mTBI patients. Fifteen acute mTBI patients and 15 sex-, age-, and education-matched healthy controls (HCs) were studied. We used the regional homogeneity (ReHo) method to map local connectivity across the whole brain and performed a two-sample t-test between the two groups. Compared with HCs, patients with acute mTBI showed significantly decreased ReHo in the left insula, left precentral/postcentral gyrus, and left supramarginal gyrus (p < 0.05, AlphaSim corrected). The ReHo index of the left insula showed a positive correlation with the Mini-Mental State Examination (MMSE) scores across all acute mTBI patients (p < 0.05, uncorrected). The ReHo method may provide an objective biomarker for evaluating the functional abnormity of mTBI in the acute setting.
Rationale and Objectives: Recently, advanced magnetic resonance imaging has been widely adopted to investigate altered structure and functional activities in patients with diffuse axonal injury (DAI), this patient presumed to be caused by shearing forces and results in significant neurological effects. However, little is known regarding cerebral temporal dynamics and its predictive ability in the clinical dysfunction of DAI. Materials and Methods: In this study, static and dynamic fractional amplitude of low-frequency fluctuation (fALFF), an improved approach to detect the intensity of intrinsic neural activities, and their temporal variability were applied to examine the alteration between DAI patients (n = 24) and healthy controls (n = 26) at the voxel level. Then, the altered functional index was used to explore the clinical relationship and predict dysfunction in DAI patients. Results: We discovered that, compared to healthy controls, DAI patients showed commonly altered regions of static fALFF, and its variability was mainly located in the left cerebellum posterior lobe. Furthermore, decreased static fALFF values over the left cerebellum posterior lobe and bilateral medial frontal gyrus showed significant correlations with disease duration and Mini-Mental State Examination scores. More important, the increased temporal variability of dynamic fALFF in the left caudate could predict the severity of the Glasgow Coma Scale score in DAI patients. Conclusion: Overall, these results suggested selective abnormalities in intrinsic neural activities with reduced intensity and increased variability, and this novel predictive marker may be developed as a useful indicator for future connectomics or artificial intelligence analyses.
Disrupted white matter structure has been established in patients with diffuse axonal injury (DAI), but morphological changes in gray matter and local intrinsic activity in the short and midterm (before 6 months) have not been documented in DAI patients. We hypothesized that regionally selective atrophy observed in deep gray matter in the short-term and mid-term periods in patients with mild-to-moderate DAI, local atrophy, and/or dysfunction would be related to clinical characteristics. We evaluated the changes in regional density and synchronization in 18 DAI patients separately using Diffeomorphic Anatomical Registration through Exponentiated Lie algebra-enhanced voxel-based morphometry and regional homogeneity (ReHo). Compared with the controls, DAI patients showed a decreased density in the bilateral thalami and decreased ReHo values in the ventral anterior and ventral lateral nuclei of the bilateral thalami. Pearson’s correlation analysis showed that decreased density in the bilateral thalami was correlated negatively with time since injury and decreased ReHo values in the ventral anterior and ventral lateral nuclei of the bilateral thalami were associated with a worsened motor assessment scale. These findings suggest that mild-to-moderate traumatic DAI within the short and midterm could lead to thalamic atrophy and that dysfunction in the bilateral thalami is associated with declining motor function. This study could potentially provide complementary evidence as an important element in longitudinal studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.