Outbreaks of locust plagues result from the long-term accumulation of high-density egg production. The migratory locust, Locusta migratoria, displays dramatic differences in the egg-laid number with dependence on population density, while solitarious locusts lay more eggs compared to gregarious ones. However, the regulatory mechanism for the egg-laid number difference is unclear. Herein, we confirm that oosorption plays a crucial role in the regulation of egg number through the comparison of physiological and molecular biological profiles in gregarious and solitarious locusts. We find that gregarious oocytes display a 15% higher oosorption ratio than solitarious ones. Activinβ (Actβ) is the most highly upregulated gene in the gregarious terminal oocyte (GTO) compared to solitarious terminal oocyte (STO). Meanwhile, Actβ increases sharply from the normal oocyte (N) to resorption body 1 (RB1) stage during oosorption. The knockdown of Actβ significantly reduces the oosorption ratio by 13% in gregarious locusts, resulting in an increase in the egg-laid number. Based on bioinformatic prediction and experimental verification, microRNA-34 with three isoforms can target Actβ. The microRNAs display higher expression levels in STO than those in GTO and contrasting expression patterns of Actβ from the N to RB1 transition. Overexpression of each miR-34 isoform leads to decreased Actβ levels and significantly reduces the oosorption ratio in gregarious locusts. In contrast, inhibition of the miR-34 isoforms results in increased Actβ levels and eventually elevates the oosorption ratio of solitarious locusts. Our study reports an undescribed mechanism of oosorption through miRNA targeting of a TGFβ ligand and provides new insights into the mechanism of density-dependent reproductive adaption in insects.
Host adaptation has the potential to cause rapid genetic variation in symbiotic microorganisms in insects. How mutations in symbiotic viruses favor viral fitness in hosts and even influence host adaptability to new environments remains elusive. Here, we explored the role of genetic divergence at one site of a symbiotic virus, Acyrthosiphon pisum virus (APV), in the host aphid’s adaptation to unfavorable plants. Based on the transcriptomes of the pea aphid Vicia faba colony and Vicia villosa colony, 46 single nucleotide polymorphism (SNP) sites were found in the APV genomes from the two aphid colonies. One SNP at site 5,990, G5990A, located at the RNA-dependent RNA polymerase (RdRp) domain, demonstrated a predominance from G to A when the host aphids were shifted from V. faba to the low-fitness plants V. villosa or Medicago sativa. This SNP resulted in a substitution from serine (S) to asparagine (N) at site 196 in RdRp. Although S196N was predicted to be located at a random coil far away from conserved functional motifs, the polymerase activity of the N196 type of RdRp was increased by 44.5% compared to that of the S196 type. The promoted enzymatic activity of RdRp was associated with a higher replication level of APV, which was beneficial for aphids as APV suppressed plant’s resistance reactions toward aphids. The findings showed a novel case in which mutations selected in a symbiotic virus may confer a favor on the host as the host adapts to new environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.