To determine whether Akt activation was sufficient for the transformation of normal prostate epithelial cells, murine prostate restricted Akt kinase activity was generated in transgenic mice (MPAKT mice). Akt expression led to p70 S6K activation, prostatic intraepithelial neoplasia (PIN), and bladder obstruction. mRNA expression profiles from MPAKT ventral prostate revealed similarities to human cancer and an angiogenic signature that included three angiogenin family members, one of which was found elevated in the plasma of men with prostate cancer. Thus, the MPAKT model may be useful in studying the role of Akt in prostate epithelial cell transformation and in the discovery of molecular markers relevant to human disease.
The Moon has a magmatic and thermal history that is distinct from that of the terrestrial planets1. Radioisotope dating of lunar samples suggests that most lunar basaltic magmatism ceased by around 2.9–2.8 billion years ago (Ga)2,3, although younger basalts between 3 Ga and 1 Ga have been suggested by crater-counting chronology, which has large uncertainties owing to the lack of returned samples for calibration4,5. Here we report a precise lead–lead age of 2,030 ± 4 million years ago for basalt clasts returned by the Chang’e-5 mission, and a 238U/204Pb ratio (µ value)6 of about 680 for a source that evolved through two stages of differentiation. This is the youngest crystallization age reported so far for lunar basalts by radiometric dating, extending the duration of lunar volcanism by approximately 800–900 million years. The µ value of the Chang’e-5 basalt mantle source is within the range of low-titanium and high-titanium basalts from Apollo sites (µ value of about 300–1,000), but notably lower than those of potassium, rare-earth elements and phosphorus (KREEP) and high-aluminium basalts7 (µ value of about 2,600–3,700), indicating that the Chang’e-5 basalts were produced by melting of a KREEP-poor source. This age provides a pivotal calibration point for crater-counting chronology in the inner Solar System and provides insight on the volcanic and thermal history of the Moon.
A number of plasmonic devices and applications, such as chemical and biological sensors, plasmon-enhanced solar cells, optical nanoantennas, metamaterials and metasurfaces, require the deposition of plasmonic metal nanocrystals on various substrates. Because the localized plasmon resonance modes, energies and strengths are strongly dependent on the dielectric function of the surrounding environment, the substrate is expected to largely affect the plasmonic properties of supported metal nanocrystals. Therefore, understanding the effects of the substrate on the plasmonic properties of metal nanocrystals and the roles of the involved factors will be crucial for designing various plasmonic devices that are made of metal nanocrystals deposited on different substrates. Herein we report on our study and results of the effects of substrates with distinct dielectric functions on the plasmonic properties of three types of Au nanocrystals. A combination of experiments and numerical simulations shows that the presence of a substrate causes plasmonic shifts as well as the appearance of new plasmon modes. The plasmonic shifts and the emergence of new plasmon modes are found to be dependent on the particle shape of Au nanocrystals and in turn on the fractional particle surface area that is in contact with the supporting substrate. For Au nanospheres and nanorods, plasmonic shifts, less than 100 nm, are observed on the scattering spectra by changing the supporting substrate from indium tin oxide to silicon. In comparison, a giant spectral shift of more than 300 nm is obtained for Au nanoplates. Moreover, silicon substrates induce the emergence of an out-of-plane quadrupolar mode of Au nanoplates, which interacts with an out-of-plane octupolar mode to give rise to a distinct Fano resonance. The Fano resonance is found to become stronger as the thickness of Au nanoplates is decreased. These results are of great importance for understanding the plasmonic properties of noble metal nanocrystals supported on various substrates, and for designing novel plasmonic nanostructures with desired optical properties and functions.
Objectives: This study aimed to evaluate the diagnostic performance of magnetic resonance perfusion-weighted imaging (PWI) as a noninvasive method to assess post-treatment radiation effect and tumor progression in patients with glioma. Methods: A systematic literature search was performed in the PubMed, Cochrane Library, and Embase databases up to March 2020. The quality of the included studies was assessed by the quality assessment of diagnostic accuracy studies 2. Data were extracted to calculate sensitivity, specificity, and diagnostic odds ratio (DOR), 95% Confidence interval (CI) and analyze the heterogeneity of the studies (Spearman correlation coefficient, I 2 test). We performed meta-regression and subgroup analyses to identify the impact of study heterogeneity. Results: Twenty studies were included, with available data for analysis on 939 patients and 968 lesions. All included studies used dynamic susceptibility contrast (DSC) PWI, four also used dynamic contrast-enhanced PWI, and three also used arterial spin marker imaging PWI. When DSC was considered, the pooled sensitivity and specificity were 0.83 (95% CI, 0.79 to 0.86) and 0.83 (95% CI, 0.78 to 0.87), respectively; pooled DOR, 21.31 (95% CI, 13.07 to 34.73); area under the curve (AUC), 0.887; Q∗, 0.8176. In studies using dynamic contrast-enhanced, the pooled sensitivity and specificity were 0.73 (95% CI, 0.66 to 0.80) and 0.80 (95% CI, 0.69 to 0.88), respectively; pooled DOR, 10.83 (95% CI, 2.01 to 58.43); AUC, 0.9416; Q∗, 0.8795. In studies using arterial spin labeling, the pooled sensitivity and specificity were 0.79 (95% CI, 0.69 to 0.87) and 0.78 (95% CI, 0.67 to 0.87), respectively; pooled DOR, 15.63 (95% CI, 4.61 to 53.02); AUC, 0.8786; Q∗, 0.809. Conclusions: Perfusion magnetic resonance imaging displays moderate overall accuracy in identifying post-treatment radiation effect and tumor progression in patients with glioma. Based on the current evidence, DSC-PWI is a relatively reliable option for assessing tumor progression after glioma radiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.