Fast and sensitive detection of gaseous volatile organic compounds (VOCs), based on surface-enhanced Raman spectroscopy (SERS), is still a challenge due to their weak interaction with plasmonic metals and overly small Raman scattering cross sections. Herein, we propose a simple strategy to achieve the SERS-based highly efficient detection of trace benzene−VOCs (B-VOCs) based on a composite chip. The composite chip is designed and fabricated via covering the porous zinc oxide on gold nanoarrays by a one-step solution growth method. Such composite chip shows highly selective capture of gaseous B-VOCs (benzene, toluene, nitrobenzene, xylene, and chlorobenzene, etc.), which leads to the rapid and sensitive SERS responses to them. Typically, this chip can response to gaseous toluene within 30 s, and the lowest detectable concentration is below 10 ppb. Further experiments have revealed that there exists an optimal thickness of the ZnO covering layer for the highly efficient SERS response to the B-VOCs, which is about 150 nm. Also, such a composite chip is recoverable in SERS response and hence reusable. The highly efficient SERS response of the composite chip to the B-VOCs is attributed to the porous structure-enhanced molecular adsorption and the electromagnetic-chemical dualenhancement mechanism. This work not only presents a practical SERS chip for the efficient detection of the typical B-VOCs but also provides a deep understand the interaction between the B-VOCs and the ZnO as well as the chemical enhancement mechanism.
Significantly increasing the photothermal conversion of plasmonic nanostructured particles (PNPs) is a common goal for all applications of thermoplasmonics, but it is still in challenge, especially for PNPs with the morphology and composition required for a specific photothermal application. Here, we present a concept of defect-induced damping-enhanced photothermal conversion, which favors PNP intrinsic properties. A model of a defect-damped harmonic oscillator is established to depict photothermal conversion correlation with the structure of PNPs and is capable of accurately reproducing the optical performance of the PNPs with the local surface plasmon resonance far from the interband transition. The theoretical model analyses demonstrate that the defect-induced damping can significantly suppress the light scattering of the PNPs and effectively improve their photothermal conversion efficiency. Especially for the PNPs with a sufficiently large size (larger than ∼100 nm for Au and Ag), we show that defect-induced damping can significantly enhance their light absorption and photothermal performances. These are experimentally confirmed. Typically, defect-enriched Au nanostars with ∼100–150 nm profile size were fabricated and showed much higher photothermal performance and a big increment by 23% in photothermal conversion efficiency, compared with the normal (or defect-impoverished) counterpart. Furthermore, the in vitro and in vivo biological experiments demonstrate that this defect-enriched PNP can indeed exhibit significantly higher photothermal performance than the normal counterpart in cells and mouse tumors, which confirms the validity of the presented strategy in typical practical applications. This work provides a strategy to intrinsically and significantly enhance plasmonic photothermal conversion of PNPs with a sufficiently large size, which is not only suitable for PNPs with the morphology and composition required for specific applications but also can be combined with existing strategies to further increase their photothermal performance.
More molecules mean a stronger signal for surface-enhanced Raman spectroscopy (SERS), as usually expected. However, this is not always true in many cases. The factual molecular concentration dependence of the SERS intensity has always been controversial and confusing. Here, we present a chemical interface damping (CID)-induced SERS signal attenuation mechanism to reveal it based on electromagnetic theory and experimentally demonstrate its validity. It has been revealed that the SERS intensity is the result of competition between the two opposite effects of molecular adsorption-induced Raman scattering centers and CID, but not necessarily increasing with the rising concentration, especially at a relatively high concentration. When the molecular adsorption-induced CID is strong enough, the SERS intensity shows a nonmonotonic concentration dependence, while the weak CID leads to the monotonic concentration dependence under optimal excitation. In addition, the excitation condition also significantly influences the concentration dependence of the SERS intensity. When an excitation wavelength significantly deviates from the local surface plasmon resonance of the SERS substrate, the SERS intensity will increase monotonously with the rising concentration, even in the case of the strong CID, despite the reduced overall signal intensity. This work not only deepens the understanding of the electromagnetic enhancement mechanism in SERS, which is also of significance in the quantitative analyses, but also is suitable for the other plasmon-enhanced molecular spectroscopies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.