This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The impact of the manufacturing process on the radiation-induced degradation effects observed in CMOS image sensors (CISs) at the MGy total ionizing dose (TID) levels is investigated. Moreover, the vulnerability of the partially pinned PHDs at moderate-to-high TIDs is evaluated for the first time to our knowledge (PHD stands for "photodiode"). It is shown that the 3T-standard partially pinned PHD has the lowest dark current before irradiation, but its dark current increases to ∼1 pA at 10 kGy(SiO 2). Beyond 10 kGy(SiO 2), the pixel functionality is lost. The comparison between several CIS technologies points out that the manufacturing process impacts the two main radiation-induced degradations: the threshold voltage shift of the readout chain MOSFETs and the dark current increase. For all the tested technologies, 1.8-V MOSFETs exhibit the lower threshold voltage shift, and the nMOSFETs are the most radiation tolerant. Among all the tested devices, 1.8-V sensors achieve the best dark current performance. Several radiationhardening-by-design solutions are evaluated at the MGy level to improve further the understanding of CIS radiation hardening at extreme TID.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.