Background The INBUILD trial investigated the efficacy and safety of nintedanib versus placebo in patients with progressive fibrosing interstitial lung diseases (ILDs) other than idiopathic pulmonary fibrosis (IPF). We aimed to establish the effects of nintedanib in subgroups based on ILD diagnosis. Methods The INBUILD trial was a randomised, double-blind, placebo-controlled, parallel group trial done at 153 sites in 15 countries. Participants had an investigator-diagnosed fibrosing ILD other than IPF, with chest imaging features of fibrosis of more than 10% extent on high resolution CT (HRCT), forced vital capacity (FVC) of 45% or more predicted, and diffusing capacity of the lung for carbon monoxide (DLco) of at least 30% and less than 80% predicted. Participants fulfilled protocol-defined criteria for ILD progression in the 24 months before screening, despite management considered appropriate in clinical practice for the individual ILD. Participants were randomly assigned 1:1 by means of a pseudorandom number generator to receive nintedanib 150 mg twice daily or placebo for at least 52 weeks. Participants, investigators, and other personnel involved in the trial and analysis were masked to treatment assignment until after database lock. In this subgroup analysis, we assessed the rate of decline in FVC (mL/year) over 52 weeks in patients who received at least one dose of nintedanib or placebo in five prespecified subgroups based on the ILD diagnoses documented by the investigators: hypersensitivity pneumonitis, autoimmune ILDs, idiopathic non-specific interstitial pneumonia, unclassifiable idiopathic interstitial pneumonia, and other ILDs. The trial has been completed and is registered with ClinicalTrials.gov, number NCT02999178.
As of June 2020, Coronavirus Disease 2019 (COVID-19) has killed an estimated 440 000 people worldwide, 74% of whom were aged ≥65 years, making age the most significant risk factor for death caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To examine the effect of age on death, we established a SARS-CoV-2 infection model in Chinese rhesus macaques (
Macaca mulatta
) of varied ages. Results indicated that infected young macaques manifested impaired respiratory function, active viral replication, severe lung damage, and infiltration of CD11b
+
and CD8
+
cells in lungs at one-week post infection (wpi), but also recovered rapidly at 2 wpi. In contrast, aged macaques demonstrated delayed immune responses with a more severe cytokine storm, increased infiltration of CD11b
+
cells, and persistent infiltration of CD8
+
cells in the lungs at 2 wpi. In addition, peripheral blood T cells from aged macaques showed greater inflammation and chemotaxis, but weaker antiviral functions than that in cells from young macaques. Thus, the delayed but more severe cytokine storm and higher immune cell infiltration may explain the poorer prognosis of older aged patients suffering SARS-CoV-2 infection.
To investigate the clinical features, risk factors and outcomes of patients with interstitial pneumonia with autoimmune features (IPAF). A total of 1429 patients with idiopathic interstitial pneumonia (IIP) and undifferentiated connective tissue disease-associated interstitial lung disease (UCTD-ILD) were screened to identify patients who met IPAF criteria. Clinical, serological, and morphological features of patients with IPAF were characterized. Outcomes between patients with IPAF, UCTD-ILD, and IIP who were divided into idiopathic pulmonary fibrosis (IPF) and non-IPF groups were compared using survival as an endpoint. Patients with IPAF were much common in young female and had lower percentage of ever smoking and a significantly shorter survival than those with non-IPAF (P < 0.001). Subgroup analysis revealed that IPAF cohort survival was worse than that in non-IPF (P < 0.001), but better than that in IPF (P < 0.001). In IPAF cohort, the most common systemic symptom and serological abnormality were Raynaud's phenomenon (12.9%) and ANA ≥ 1:320 (49.2%); the most frequent high-resolution computed tomography (HRCT) pattern was nonspecific interstitial pneumonia (NSIP) (61.6%). Multivariate analysis indicated that several factors including age, smoking history, organizing pneumonia (OP) pattern in HRCT, and anti-RNP positivity were independently associated with significantly worse survival. IPAF had the distinct clinical features and outcomes compared with other groups of ILD. Additional studies should be needed to explore the underlying autoimmune mechanism and to determine risk stratification in future clinical research.
Idiopathic pulmonary fibrosis (IPF) is an aging‐associated disease with poor prognosis. Currently, there are no effective drugs for preventing the disease process. The mechanisms underlying the role of alveolar epithelial cell (AEC) senescence in the pathogenesis of IPF remain poorly understood. We aimed to explore whether PTEN/NF‐κB activated AEC senescence thus resulting in lung fibrosis. First, we investigated the association between the activation of PTEN/NF‐κB and cellular senescence in lung tissues from IPF patients. As a result, decreased PTEN, activated NF‐κB and increased senescent markers (P21WAF1, P16ink4a, and SA‐β‐gal) were found in AECs in fibrotic lung tissues detected by immunohistochemistry (IHC) and immunofluorescence (IF). In vitro experiments showed increased expression levels of senescent markers and augmented senescence‐associated secretory phenotype (SASP) in AECs treated with bleomycin (Blm); however, PTEN was reduced significantly following IκB, IKK, and NF‐κB activation after stimulation with Blm in AECs. AEC senescence was accelerated by PTEN knockdown, whereas senescence was reversed via NF‐κB knockdown and the pharmacological inhibition (BMS‐345541) of the NF‐κB pathway. Interestingly, we observed increased collagen deposition in fibroblasts cultured with the supernatants collected from senescent AECs. Conversely, the deposition of collagen in fibroblasts was reduced with exposure to the supernatants collected from NF‐κB knockdown AECs. These findings indicated that senescent AECs controlled by the PTEN/NF‐κB pathway facilitated collagen accumulation in fibroblasts, resulting in lung fibrosis. In conclusion, our study supports the notion that as an initial step in IPF, the senescence process in AECs may be a potential therapeutic target, and the PTEN/NF‐κB pathway may be a promising candidate for intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.