The mass transfer (stripping of ethanol) and pressure drop
(water−air) of a rotating packed
bed were investigated under 13−273 equiv of gravitational force with
two packings. The results
indicated that the mass-transfer coefficient
(K
G
a) was enhanced due to the
centrifugal force as
compared to a conventional packed bed. An empirical correlation
was also proposed, suggesting
that the K
G
a value depends on the
Gr
G number to the power of 0.25. As to
pressure drop, the
gas rate seems to be a more important factor than the liquid rate
because of less liquid holdup
under centrifugal force. A semiempirical equation was also
developed to correlate the pressure
drop data with good agreement.
Helix-coil equilibrium studies are important for understanding helix formation in protein folding, and for helical foldamer design. The quantitative description of a helix using statistical mechanical models is based on experimentally derived helix propensities and the assumption that helix propensity is position-independent. To investigate this assumption, we studied a series of 19-residue Ala-based peptides, to measure the helix propensity for Leu, Phe, and Pff at positions 6, 11, and 16. Circular dichroism spectroscopy revealed that substituting Ala with a given amino acid (Leu, Phe, or Pff) resulted in the following fraction helix trend: KXaa16 > KXaa6 > KXaa11. Helix propensities for Leu, Phe, and Pff at the different positions were derived from the CD data. For the same amino acid, helix propensities were similar at positions 6 and 11, but much higher at position 16 (close to the C-terminus). A survey of protein helices revealed that Leu/Phe-Lys (i, i + 3) sequence patterns frequently occur in two structural patterns involving the helix C-terminus; however, these cases include a left-handed conformation residue. Furthermore, no Leu/Phe-Lys interaction was found except for the Lys-Phe cation-π interaction in two cases of Phe-Ala-Ala-Lys. The apparent high helix propensity at position 16 may be due to helix capping, adoption of a 3₁₀-helix near the C-terminus perhaps with Xaa-Lys (i, i + 3) interactions, or proximity to the peptide chain terminus. Accordingly, helix propensity is generally position-independent except in the presence of alternative structures or in the proximity of either chain terminus. These results should facilitate the design of helical peptides, proteins, and foldamers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.