Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy.
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor with poor prognosis. Current treatment is rarely curative, thus novel meaningful therapies are urgently needed. Inhibition of Hedgehog (Hh) signaling at the cell membrane level in several cancers has shown anti-cancer activity in recent clinical studies. Evidence of Hh-independent Gli activation suggests Gli as a more potent therapeutic target. The current study is aimed to evaluate the potential of Gli as a therapeutic target to treat MPM. The expression profiles of Gli factors and other Hh signaling components were characterized in 46 MPM patient tissue samples by RT-PCR and immunohistochemistry. Cultured cell lines were employed to investigate the requirement of Gli activation in tumor cell growth by inhibiting Gli through siRNA or a novel small molecule Gli inhibitor (Gli-I). A xenograft model was used to evaluate Gli-I in vivo. In addition, a side by side comparison between Gli and Smoothened (Smo) inhibition was conducted in vitro using siRNA and small molecule inhibitors. Our study reported aberrant Gli1 and Gli2 activation in a large majority of tissues. Inhibition of Gli by siRNAs or Gli-I suppressed cell growth dramatically both in vitro and in vivo. Inhibition of Gli exhibited better cytotoxicity than that of Smo by siRNA and small molecule inhibitors vismodegib and cyclopamine. Combination of Gli-I and pemetrexed, as well as Gli-I and vismodegib demonstrated synergistic effects in suppression of MPM proliferation in vitro. In summary, Gli activation plays a critical role in MPM. Inhibition of Gli function holds strong potential to become a novel, clinically effective approach to treat MPM.
Taiwan. The authors wish to thank Miss Ingrid Kuo and the Center for Big Data Analytics and Statistics (Grant CLRPG3D0046) of Chang Gung Memorial Hospital for creating the graphical abstract used herein. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
BackgroundAdaptive radiotherapy (ART) has potential benefits in patients with nasopharyngeal cancer (NPC). This retrospective study aimed to identify the factors favoring ART.Materials and methodsForty NPC patients were retrospectively included in this study. All patients received two-phase, volumetric modulated arc radiotherapy (VMAT) and underwent a second computed tomography (CT) for the phase II ART. We generated phantom, non-ART plans by a hybrid method for comparison with ART plans. A paired t-test was used to evaluate the dose differences between these two plans. A subgroup analysis through a paired t-test was used to evaluate the factors favoring ART.ResultsThe second CT images were captured at the median 22 fractions. The median total dose of the planning target volume-one (PTV-1) was 72 Gy, and the phase II dose was 16 Gy. The volumes of the ipsilateral parotid gland (23.2 vs. 19.2 ml, p < 0.000), contralateral parotid gland (23.0 vs. 18.4 ml, p < 0.000), clinical target volume-1 (CTV-1, 32.2 vs. 20.9 ml, p < 0.000), and PTV-1 (125.8 vs. 107.3 ml, p < 0.000) all shrunk significantly between these two CT simulation procedures. Among the nearby critical organs, only the ipsilateral parotid gland displayed significant dose reduction by the ART plan (5.3 vs. 6.0 Gy, p = 0.004). Compared to the phantom plan, the ART could significantly improve the PTV-1 target volume coverage of D98 (15.4 vs. 12.3 Gy, p < 0.000). Based on the D98 of PTV-1, the factors of a large initial weight (> 60 kg, p < 0.000), large body mass index (BMI) (> 21.5, p < 0.000), obvious weight loss (> 2.8 kg, p < 0.000), concurrent chemoradiotherapy (p < 0.000), and stages III–IV (p < 0.000) favored the use of ART.ConclusionsART could significantly reduce the mean dose to the ipsilateral parotid gland. ART has dosimetrical benefit for patients with a heavy initial weight, large BMI, obvious weight loss, concurrent chemoradiotherapy, and cancer in stages III–IV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.