Methane emissions out of the seabed could seriously affect Earth's climate and are usually associated with the dissociation of gas hydrates stored in marine sediments on the continental margins. Spatially, gas emissions out of the seafloor are not evenly distributed in continental margins. Gas emissions out of the seabed generally occur through submarine mud volcanoes and gas seeps. To understand the seabed gas emissions off SW Taiwan, we investigate the distributions of active submarine mud volcanoes, gas seeps, and gas plumes off SW Taiwan. We examine all of the available sub-bottom profiler and EK echo sounder data. We identified 19 submarine mud volcanoes, 220 gas seeps, and 295 gas plumes. The gas emissions are generally distributed at the crests of mud diapiric ridges. Most of the active mud volcanoes and gas seeps cluster at the KASMVG (Kaoping submarine mud volcanoes group) area. We speculate that the intensive mud volcanism and gas seepage at the KASMVG area are ascribed to submarine channel erosion along the continental slope base. The erosion causes a deep V-shaped channel and a steep BSR (Bottom-Simulating Reflector) slope curve across the continental margin. The upward migration rate of free gas beneath the BSR is thus increased and intensifies mud volcanism and gas seepage at the KASMVG area. The gas seeps can reduce the slope stability and generate small-scale slides. The development of mud volcanoes in an area could effectively disturb the seabed morphology so that large-scale submarine landslides cannot easily happen.
Summary
The distribution of historic earthquakes in the Sumatra subduction zone reveals, in the fore-arc region, the intense seismic activity and frequent occurrences of Mw > 8 earthquakes throughout the whole area. In contrast, the neighboring region has less dense seismicity, and no large earthquake greater than Mw8 has been observed in the Java subduction zone. Such different seismic behaviors may be due to distinct degrees of the stress accumulation and release. In this study, the strength of plate coupling inferred from mantle lithosphere buoyancy (Hm) estimation is used to explain the seismogenic behavior in the Sunda-Andaman subduction zone. Strong and weak plate coupling status are obtained in the Sumatra and Java subduction zones, respectively. These results can explain the significant differences in seismogenic behaviors in the Sunda-Andaman subduction zone. In assessing the global implications of this finding, we observe that uplifted serpentinized fore-arc mantle peridotite is the critical phenomenon in weak plate coupling cases and leads to a limit on the width of the coupling zone. Strong plate coupling can cause a relatively low gravity anomaly as well as a negative trench-parallel gravity anomaly (TPGA) in the fore-arc regions and correlates well with the occurrence of large earthquakes, whereas weak plate coupling can cause a positive TPGA and constrain the potential occurrence of large earthquakes.
The southern Okinawa Trough has been widely considered an important area with hydrothermal activity. Several active hydrothermal fields have been reported, especially around the Yonaguni Knoll IV. In this study, we collected marine sediment cores around the Yonaguni Knoll IV by using the R/V Ocean Research 1. Core sites with and without gas disturbance were selected based on the single-beam bathymetry (Chirp) by using the onboard echo sounder system. For the sites away from gas disturbance, which are generally considered showing the background situation in the southern Okinawa Trough, variations of the magnetic susceptibility in these cores are relatively stable with values about between 20 × 10-5 and 60 × 10-5 SI. As for the sites with clear gas-features detected by the Chirp sonar, the signature with dramatically changing magnetic susceptibility is observed in the cores. In general, gasfeatures are considered linking to the hydrothermal activity in the southern Okinawa Trough. Magnetic signature with such abruptly changing magnetic susceptibility could also be considered being caused by authigenic iron sulfides associated with the hydrothermal alternation. Therefore, the rock magnetic anomaly could be suggested as an indicator revealing the hydrothermal activity in the southern Okinawa Trough.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.