Melatonin is a well-characterized antioxidant that has been successfully used to protect oocytes from reactive oxygen species during in vitro maturation (IVM), resulting in improved fertilization capacity and development ability. However, the mechanism via which melatonin improves oocyte fertilization capacity and development ability remains to be determined. Here, we studied the effects of melatonin on cytoplasmic maturation of bovine oocytes. In the present study, bovine oocytes were cultured in IVM medium supplemented with 0, 10 -7 , 10 -9 , and 10 −11 mol/L melatonin, and the cytoplasmic maturation parameters of MII oocytes after IVM were investigated, in- K E Y W O R D Sbovine, cytoplasmic maturation, in vitro maturation, melatonin, oocytes
Anti-Müllerian hormone (AMH) is a reliable and easily detectable reproductive marker for the fertility competence of many farm animal species. AMH is also a good predictor of superovulation in cattle, sheep, and mares. In this review, we have summarized the recent findings related to AMH and its predictive reliability related to fertility and superovulation in domestic animals, especially in cattle. We focused on: (1) the dynamics of AMH level from infancy to prepubescence as well as during puberty and adulthood; (2) AMH as a predictor of fertility; (3) the association between antral follicle count (AFC) and plasma AMH level; (4) AMH as a predictor of superovulation; and (5) factors affecting AMH levels in domestic animals, especially cattle. Many factors affect the circulatory levels of AMH when considering the plasma, like nutrition, activity of granulosa cells, disease state and endocrine disruptions during fetal life. Briefly, we concluded that AMH concentrations are static within individuals, and collection of a single dose of blood has become more popular in the field of assisted reproductive technologies (ART). It may act as a potential predictor of fertility, superovulation, and ovarian disorders in domestic animals. However, due to the limited research in domestic animals, this potential of AMH remains underutilized.
Paraquat (PQ), a broad-spectrum agricultural pesticide, causes cellular toxicity by increasing oxidative stress levels in various biological systems, including the reproductive system. PQ exposure causes embryotoxicity and reduces the developmental abilities of embryos. However, there is little information regarding the toxic effects of PQ on oocyte maturation. In this study, we studied the toxic effects of PQ exposure and the effects of melatonin on PQ-induced damage in bovine oocytes. PQ exposure disrupted nuclear and cytoplasmic maturation, which was manifested as decreased cumulus cell expansion, reduced first polar body extrusion, and abnormal distribution patterns of cortical granules and mitochondria. In addition, PQ treatment severely disrupted the ability of the resulted in vitro-produced embryos to develop to the blastocyst stage. Moreover, PQ exposure significantly increased the intracellular reactive oxygen species (ROS) level and early apoptotic rate, and decreased the glutathione (GSH) level, antioxidative CAT and GPx4 mRNA, and apoptotic-related Bcl-2/Bax mRNA ratio. These results indicated that PQ causes reproductive toxicity in bovine oocytes. Melatonin application resulted in significant protection against the toxic effects of PQ in PQ-exposed oocytes. The mechanisms underlying the role of melatonin included the inhibition of PQ-induced p38 mitogen-activated protein kinase (MAPK) activation, and restoration of abnormal trimethyl-histone H3 lysine 4 (H3K4me3) and trimethyl-histone H3 lysine 9 (H3K9me3) levels. These results reveal that melatonin serves as a powerful agent against experimental PQ-induced toxicity during bovine oocyte maturation and could form a basis for further studies to develop therapeutic strategies against PQ poisoning. K E Y W O R D Sbovine, melatonin, oocyte maturation, oxidative damage, paraquat 2 of 15 | PANG et Al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.