From the beginning of 2002 and 2012, severe respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) crossed the species barriers to infect humans, causing thousands of infections and hundreds of deaths, respectively. Currently, a novel coronavirus (SARS-CoV-2), which has become the cause of the outbreak of Coronavirus Disease 2019 (COVID-19), was discovered. Until 18 February 2020, there were 72 533 confirmed COVID-19 cases (including 10 644 severe cases) and 1872 deaths in China. SARS-CoV-2 is spreading among the public and causing substantial burden due to its human-to-human transmission. However, the intermediate host of SARS-CoV-2 is still unclear. Finding the possible intermediate host of SARS-CoV-2is imperative to prevent further spread of the epidemic. In this study, we used systematic comparison and analysis to predict the interaction between the receptor-binding domain (RBD) of coronavirus spike protein and the host receptor, angiotensin-converting enzyme 2 (ACE2). The interaction between the key amino acids of S protein RBD and ACE2 indicated that, other than pangolins and snakes, as previously suggested, turtles (Chrysemys picta bellii, Chelonia mydas, and Pelodiscus sinensis) may act as the potential intermediate hosts transmitting SARS-CoV-2 to humans.
Schistosomiasis, also called bilharziasis, is a neglected tropical disease induced by Schistosoma spp. that causes hundreds of millions of infections. Although Schistosoma ova-induced granulomas commonly cause inflammation, hyperplasia, ulceration, micro abscess formation, and polyposis, the role of the egg granuloma on the gut microbiome remains unclear. To explore the role, gut microbial communities in mice infected with Schistosoma japonicum were surveyed. Female C57BL/6 and BALB/c mice were exposed to cercariae of S. japonicum for 45 and 65 days and then sacrificed. Intestinal contents and feces were collected, DNA was extracted, and high-throughput 16S rRNA gene-based pyrosequencing was used to provide a comparative analysis of gut microbial diversity. The intestinal mucosal tissues were also examined. Histopathologic analysis demonstrated that the basic structure of the colonic mucosa was damaged by ova-induced granuloma. Regarding the gut microbiome, 2,578,303 good-quality sequences were studied and assigned to 25,278 Operational Taxonomic Units (OTUs) at a threshold of 97% similarity. The average number of OTUs for C57BL/6 and BALB/c were 545 and 530, respectively. At the phylum level, intestinal microbial communities were dominated by Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia. Infection with S. japonicum modified bacterial richness in the fecal associated microbiota. Exposure significantly modified bacterial community composition among different groups. At the phylogenetic levels, LEfSe analysis revealed that several bacterial taxa were significantly associated with the S. japonicum-infected mice. The present results suggest that egg granulomas in the intestine influence differentiation of the gut microbial community under pathophysiological conditions. This result suggests that intestinal microbiome-based strategies should be considered for early diagnosis, clinical treatment, and prognosis evaluation of schistosomiasis.
BackgroundSulfadoxine–pyrimethamine (SP) is recommended for intermittent preventive treatment of malaria in Africa. However, increasing SP resistance (SPR) affects the therapeutic efficacy of the SP. As molecular markers, Pfdhfr (dihydrofolate reductase) and Pfdhps (dihydropteroate synthase) genes are widely used for SPR surveillance. This study aimed to assess the prevalence of Pfdhfr and Pfdhps genes mutations and haplotypes in Plasmodium falciparum isolates collected from Bioko Island, Equatorial Guinea (EG).MethodsIn total, 180 samples were collected in 2013–2014. The single nucleotide polymorphisms (SNPs) of the Pfdhfr and Pfdhps genes were identified with nested PCR and Sanger sequencing. The genotypes and linkage disequilibrium (LD) tests were also analysed.ResultsSequences of Pfdhfr and Pfdhps genes were obtained from 92.78% (167/180) and 87.78% (158/180) of the samples, respectively. For Pfdhfr, 97.60% (163/167), 87.43% (146/167) and 97.01% (162/167) of the samples carried N51I, C59R and S108N mutant alleles, respectively. The prevalence of the Pfdhps S436A, A437G, K540E, A581G, and A613S mutations were observed in 20.25% (32/158), 90.51% (143/158), 5.06% (8/158), 0.63% (1/158), and 3.16% (5/158) of the samples, respectively. In total, 3 unique haplotypes at the Pfdhfr locus and 8 haplotypes at the Pfdhps locus were identified. A triple mutation (CIRNI) in Pfdhfr was the most prevalent haplotype (86.83%), and a single mutant haplotype (SGKAA; 62.66%) was predominant in Pfdhps. A total of 130 isolates with 12 unique haplotypes were found in the Pfdhfr and Pfdhps combined haplotypes, 65.38% (85/130) of them carried quadruple allele combinations (CIRNI-SGKAA), whereas only one isolate (0.77%, 1/130) was found to carry the wild-type (CNCSI-SAKAA). For LD analysis, the Pfdhfr N51I was significantly associated with the Pfdhps A437G (P < 0.05).ConclusionBioko Island possesses a high prevalence of the Pfdhfr triple mutation (CIRNI) and Pfdhps single mutation (SGKAA), which will undermine the pharmaceutical effect of SP for malaria treatment strategies. To avoid an increase in SPR, continuous molecular monitoring and additional control efforts are urgently needed in Bioko Island, Equatorial Guinea.
To investigate the early epidemic of COVID-19, a total of 176 confirmed COVID-19 cases in Shiyan city, Hubei province, China were surveyed. Our data indicated that the rate of emergence of early confirmed COVID-19 cases in Hubei province outside Wuhan was dependent on migration population, and the second-generation of patients were family clusters originating from Wuhan travelers. Epidemiological investigation indicated that the reproductive number (R 0) under containment strategies was 1.81, and asymptomatic SARS-CoV-2 carriers were contagious with a transmission rate of 10.7%. Among the 176 patients, 53 were admitted to the Renmin Hospital of Hubei University of Medicine. The clinical characteristics of these 53 patients were collected and compared based on a positive RT-PCR test and presence of pneumonia. Clinical data showed that 47.2% (25/53) of COVID-19 patients were co-infected with Mycoplasma pneumoniae, and COVID-19 patients coinfected with M. pneumoniae had a higher percentage of monocytes (P < 0.0044) and a lower neutrophils percentage (P < 0.0264). Therefore, it is important to assess the transmissibility of infected asymptomatic individuals for SARS-CoV-2 transmission; moreover, clinicians should be alert to the high incidence of co-infection with M. pneumoniae in COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.