BackgroundCoagulation and fibrinolysis activation is frequently observed in cancer patients, and the tumors in these cases are thought to be associated with a higher risk of invasion, metastasis, and worse long-term outcome. The objective of this study was to elucidate the prognostic significance of blood coagulation tests and various clinicopathological characteristics in patients with gallbladder cancer (GBC) after surgical resection.MethodsWe retrospectively reviewed the medical records of 115 patients with histologically confirmed GBC who underwent surgical resection in our department. The prothrombin time (PT), activated partial thromboplastin time (aPTT), thrombin time (TT), international normalized ratio (INR), fibrinogen levels, and platelet counts were measured pretreatment at the time of diagnosis. The predictive value of fibrinogen levels for tumor staging was evaluated using a receiver operating characteristic (ROC) curve analysis. Correlations between the preoperative hyperfibrinogenemia and clinicopathological characteristics were analyzed, and univariate and multivariate survival analyses were performed to identify the factors associated with overall survival (OS). Cancer cell migration and invasion in vitro were examined to investigate the function of fibrinogen in GBC cell migration.ResultsThe plasma levels for all coagulation tests, with the exception of INR, were significantly different between the GBC patients and control patients (p < 0.001). Hyperfibrinogenemia (>402 mg/dL) was associated with poorly differentiated tumors, advanced tumor invasion, lymphatic metastasis, and advanced tumor stage (p < 0.001), and had a statistically significant adverse effect on survival (p = 0.001). In the multivariate analysis, hyperfibrinogenemia (p = 0.031) was independently associated with worse OS, tumor stage (p = 0.016), margin status (p < 0.001), and lymphatic metastasis (p = 0.035). Moreover, cell migration and invasion in vitro were significantly enhanced by fibrinogen.ConclusionsPreoperative plasma fibrinogen levels was associated with tumor progression and may be an independent marker of poor prognosis in GBC patients. Furthermore, fibrinogen may contribute to cell migration by inducing epithelial-mesenchymal transition.
Gallbladder cancer (GBC) is a leading cause of cancer-related deaths worldwide, and its prognosis remains poor, with a 5-year survival rate of ~5%. Given the crucial role of microRNAs (miRNAs) in cancer metastasis, we aimed to analyze the expression and function of the metastasis-associated miRNA miR-29c-5p in GBC.We validated that expression of miR-29c-5p was significantly downregulated in GBC and was closely associated with lymph node metastasis, overall survival and disease-free survival in 40 GBC patients who were followed clinically. Ectopic overexpression of miR-29c-5p dramatically repressed proliferation, metastasis, and colony formation and induced apoptosis in vitro, and it suppressed tumorigenicity in vivo through the MAPK pathway. Cytoplasmic polyadenylation element binding protein 4 (CPEB4) was identified as a critical effector target of miR-29c-5p. Enforced expression of miR-29c-5p significantly inhibited the expression of CPEB4, and restoration of CPEB4 expression reversed the inhibitory effects of miR-29c-5p on GBC cell proliferation and metastasis. Transforming growth factor-β (TGF-β) upregulated CPEB4 by downregulating miR-29c-5p, leading to MAPK pathway activation. In conclusion, the TGF-β/miR-29c-5p/CPEB4 axis has a pivotal role in the pathogenesis and poor prognosis of GBC, suggesting that miR-29c-5p is a tumor-suppressive miRNA that may serve as potential prognostic biomarker or therapeutic target for GBC.
Gallbladder cancer (GBC) is the most common malignant tumour of the biliary track system. Angiogenesis plays a pivotal role in the development and progression of malignant tumours. miR-143-3p acts as a tumour suppressor in various cancers. Their role in GBC is however less well defined. Here we show that the expression levels of miR-143-3p were decreased in human GBC tissues compared with the non-tumour adjacent tissue (NAT) counterparts and were closely associated with overall survival. We discovered that miR-143-3p was a novel inhibitor of tumour growth and angiogenesis in vivo and in vitro. Our antibody array, ELISA and PLGF rescue analyses indicated that PLGF played an essential role in the antiangiogenic effect of miR-143-3p. Furthermore, we used miRNA target-prediction software and dual-luciferase assays to confirm that integrin α6 (ITGA6) acted as a direct target of miR-143-3p. Our ELISA and western blot analyses confirmed that the expression of PLGF was decreased via the ITGA6/PI3K/AKT pathway. In conclusion, miR-143-3p suppresses tumour angiogenesis and growth of GBC through the ITGA6/PI3K/AKT/PLGF pathways and may be a novel molecular therapeutic target for GBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.