BackgroundDyslipidemia is an important and common cardiovascular risk factor in the general population. The lipid-lowering effects of turmeric and curcumin are unconfirmed. We performed a meta-analysis to assess the efficacy and safety of turmeric and curcumin in lowering blood lipids in patients at risk of cardiovascular disease (CVD).MethodsA comprehensive literature search was conducted on PubMed, Embase, Ovid, Medline and Cochrane Library databases to identify randomized controlled trials (published as of November 2016) that assessed the effect of turmeric and curcumin on blood lipid levels including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG). Pooled standardized mean difference (SMD) with 95% confidence interval (CI) was used to assess the effect.ResultsThe analysis included 7 eligible studies (649 patients). Turmeric and curcumin significantly reduced serum LDL-C (SMD = −0.340, 95% confidence interval [CI]: −0.530 to −0.150, P < 0.0001) and TG (SMD = −0.214, 95% CI: −0.369 to −0.059, P = 0.007) levels as compared to those in the control group. These may be effective in lowering serum TC levels in patients with metabolic syndrome (MetS, SMD = −0.934, 95% CI: −1.289 to −0.579, P < 0.0001), and turmeric extract could possibly have a greater effect on reducing serum TC levels (SMD = −0.584, 95% CI: −0.980 to −0.188, P = 0.004); however, the efficacy is yet to be confirmed. Serum HDL-C levels were not obviously improved. Turmeric and curcumin appeared safe, and no serious adverse events were reported in any of the included studies.ConclusionsTurmeric and curcumin may protect patients at risk of CVD through improving serum lipid levels. Curcumin may be used as a well-tolerated dietary adjunct to conventional drugs. Further research is required to resolve uncertainties related to dosage form, dose and medication frequency of curcumin.Electronic supplementary materialThe online version of this article (10.1186/s12937-017-0293-y) contains supplementary material, which is available to authorized users.
Epstein-Barr virus-induced lymphoproliferative disease (EBV-LPD) after transplantation remains a serious and life-threatening complication. Herein we showed that the aminobisphosphonate pamidronate-expanded human Vγ9Vδ2-T cells efficiently killed EBV-transformed autologous lymphoblastoid B cell lines (EBV-LCL) through γ/δ-TCR and NKG2D receptor triggering and Fas and TRAIL engagement. By inoculation of EBV-LCL in Rag2(-/-)γc(-/-) mice and humanized mice, we established lethal EBV-LPD with characteristics close to those of the human disease. Adoptive transfer of pamidronate-expanded Vγ9Vδ2-T cells alone effectively prevented EBV-LPD in Rag2(-/-)γc(-/-) mice and induced EBV-LPD regression in EBV(+) tumor-bearing Rag2(-/-)γc(-/-) mice. Pamidronate treatment inhibited EBV-LPD development in humanized mice through selective activation and expansion of Vγ9Vδ2-T cells. This study provides proof-of-principle for a therapeutic approach using pamidronate to control EBV-LPD through Vγ9Vδ2-T cell targeting.
Legumain is a member of the asparaginyl endopeptidase family that is over-expressed in response to hypoxic stress on mammary adenocarcinoma, colorectal cancer, proliferating endothelial cells, and tumor-associated macrophages (TAMs). Here, we demonstrate that elevated expression of legumain in ovarian cancer by a proteomic approach using isobaric tags for relative and absolute quantification (iTRAQ) followed by liquid chromatography-mass spectrometry (LC-MS/MS). To investigate the relationship between legumain expression and ovarian cancer development, we tested legumain expression in malignant human ovarian tumors (n = 60), borderline ovarian tumors (n = 20), benign ovarian tumors (n = 20), and normal ovary samples (n = 20) using immunohistochemical assay (IHC). A correlation between legumain expression, and clinocopathologic and biological variables was also established. Importantly, increased legumain expression was validated by real-time PCR and Western blots, correlated positively with an increased malignancy of ovarian tumors (P < 0.01). In fact, patients with strong legumain expression had a worse prognosis (P = 0.03). In addition, results of in vitro experiments revealed that over-expression of legumain correlates with increased cell migration and invasion of ovarian cancer cells. Although legumain's functional role and clinical utility remain to be established, our results indicated that a sensitive assay for early expression of legumain may serve as both a potential biomarker and a molecular target for treatment of ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.