The World's grasslands are under severe threat from on-going degradation, yet they are largely ignored in sustainable development agendas. This degradation is undermining the capacity of grasslands to support biodiversity, ecosystem services, and human wellbeing. In this Perspective, we examine the current state of grasslands worldwide and explore the extent and dominant drivers of global grassland degradation. We identify actions that are critical to the development of socio-ecological solutions to combat degradation and promote restoration of global grasslands. Specifically, we argue that progress can be made by: increasing recognition of grasslands in global policy, developing standardised indicators of grassland degradation, using scientific innovation for effective restoration at regional and landscape scales, and enhancing knowledge transfer and data sharing on restoration experiences. The integration of these strategies into sustainability policy should help to halt grassland degradation and enhance restoration success, and protect the socio-economic, cultural and ecological benefits that grasslands provide.Grasslands, comprising open grassland, grassy shrublands and savannah, cover about 40% of the Earth's surface and some 69% of the world's agricultural land area 1-3 . Not only do they serve as an important global reservoir of biodiversity, including many iconic and endemic species, but also, they provide a wide range of material and non-material benefits to humans and our quality of life. These benefits include a wide range of ecosystem services, such as food production, water supply and regulation, carbon storage and climate mitigation, pollination, and a host of cultural services 1-3 . Despite its importance, grassland degradation is widespread and accelerating in many parts of the world 4-6 with as much as 49% of grassland area worldwide having been degraded to some extent 5,7,8 .Grassland degradation poses an enormous threat to the hundreds of millions of people who rely on grasslands worldwide for food, fuel, fibre and medicinal products, as well as their multiple cultural values 9,10 . In terms of livestock production, the global cost of grassland degradation has been estimated at $6.8 billion 11 , with the impact on human welfare being particularly severe in regions where most the population is below the poverty line Grassland degradation also creates major environmental problems, given that grasslands play a critical role in biodiversity conservation, climate and water regulation, and global biogeochemical cycles 2,4 . For example, the conversion of tropical grassy biomes to arable cropland poses a significant threat to biodiversity given that they have a vertebrate species richness comparable to forests 12 , while the recent expansion of croplands in United States has caused widespread conversion of prairie grasslands, with considerable cost to wildlife 6 . Moreover, the conversion of grasslands to arable cropland and disturbance through overgrazing, fire and invasive species can lead to signif...
Drought is a major natural hazard that can have devastating impacts on regional agriculture, water resources and the environment. To assess the variability and pattern of drought characteristics in the Huang-Huai-Hai (HHH) Plain, the daily Standardized Precipitation Evapotranspiration Index (SPEI) is developed based on daily meteorological data in this study. The daily SPEI data are used, including Annual Total Drought Severity (ATDS), Annual Total Drought Duration (ATDD) and Annual Drought Frequency (ADF), which were calculated from 1981 to 2010 at 28 meteorological stations. We used the indices (ATDS, ATDD and ADF), Hovmöller diagrams and the reliable no parameter statistical methods of the Mann-Kendall test to assess the variability and pattern of drought characteristics for the period from 1981 to 2010 in the HHH plain. The results suggested that severe drought occurred in the 1980s, the late 1990s and the early 2000s, severe drought events occurred in 1981, 1986, 1997 and 2002. Decreasing trends for both ATDS and ATDD were found, and the drought situation did not worsen under global warming during the past 30 years, and the drought situation is alleviating in the entire HHH plain. The northeast and southwest regions of the HHH plain have suffered from more severe drought, and the north region is prone to drought. The results of the study can provide a scientific understanding for the adoption of countermeasures of regional defence against drought and also may serve as a reference point for drought hazard vulnerability analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.