Background Growing evidences indicate that circular RNAs (circRNAs) play an important role in the regulation of biological behavior of tumor. We aim to explore the role of circRNA in glioma and elucidate how circRNA acts. Methods Real-time PCR was used to examine the expression of circPTN in glioma tissues and normal brain tissues (NBT). Assays of dual- luciferase reporter system, biotin label RNA pull-down and FISH were used to determine that circPTN could sponge miR-145-5p and miR-330-5p. Tumor sphere formation assay was performed to determine self- renewal of glioma stem cell (GSCs). Cell counting Kit-8 (CCK8), EdU assay and flow cytometry were used to investigate proliferation and cell cycle. Intracranial xenograft was established to determine how circPTN impacts in vivo. Tumor sphere formation assay was performed to determine self- renewal of glioma stem cell (GSCs). Results We demonstrated circPTN was significantly higher expression in glioma tissues and glioma cell lines, compared with NBT and HEB (human astrocyte). In gain- and loss-of-function experiments, circPTN significantly promoted glioma growth in vitro and in vivo. Furthermore, we performed dual-luciferase reporter assays and RNA pull-down assays to verify that circPTN acts through sponging miR-145-5p and miR-330-5p. Increasing expression of circPTN rescued the inhibition of proliferation and downregulation of SOX9/ITGA5 in glioma cells by miR-145-5p/miR-330-5p. In addition, we found that circPTN promoted self-renewal and increased the expression of stemness markers (Nestin, CD133, SOX9, and SOX2) via sponging miR-145-5p. Moreover, this regulation was disappeared when circPTN binding sites in miR-145-5p were mutated. Conclusions Our results suggest that circPTN is an oncogenic factor that acts by sponging miR-145-5p/miR-330-5p in glioma.
The efficient and specific delivery of nanoparticles (NPs) to brain tumors is crucial for successful glioma treatment. Heparin‐based polymers decorated with two peptides self‐assemble into multi‐functional NPs that specifically target glioma cells. These NPs re‐self‐assemble to a smaller size in blood, which is beneficial for in‐vivo brain drug delivery. The hydrodynamic size of one type of these NPs is 63 ± 11 nm under blood‐mimic conditions (10% fetal bovine serum), but it is 164 ± 16 nm in water. Additionally their zeta potential is more neutral in the blood‐mimic conditions. Transmission electron microscopy reveals the morphology of the spherical NPs. In vitro experiments demonstrate that the NPs exhibit a high cellular uptake and the ability to efficiently discourage proliferation, endothelial‐lined vessels, and vasculogenic mimicry. In vivo studies demonstrate that the NPs can by‐pass the normal blood–brain and blood–(brain tumor) barriers and specifically accumulate in glioma tissues; moreover, they present an excellent anti‐glioma effect in subcutaneous/intracranial glioma‐bearing mice. Their superiority is due to their appropriate size in blood and the synergic effect arising from their targeting of two different receptors. The data suggests that these NPs are ideal for anti‐glioma therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.