Ultralong organic phosphorescence (UOP) has attracted increasing attention due to its potential applications in optoelectronics, bioelectronics, and security protection. However, achieving UOP with high quantum efficiency (QE) over 20 % is still full of challenges due to intersystem crossing (ISC) and fast non‐radiative transitions in organic molecules. Here, we present a novel strategy to enhance the QE of UOP materials by modulating intramolecular halogen bonding via structural isomerism. The QE of CzS2Br reaches up to 52.10 %, which is the highest afterglow efficiency reported so far. The crucial reason for the extraordinary QE is intramolecular halogen bonding, which can not only effectively enhance ISC by promoting spin–orbit coupling, but also greatly confine motions of excited molecules to restrict non‐radiative pathways. This work provides a reasonable strategy to develop highly efficient UOP materials for practical applications.
The traditional method to achieve ultralong organic phosphorescence (UOP) is to hybrid nπ* and ππ* configurations in appropriate proportion, which are contradictory to each other for improving efficiency and lifetime of phosphorescence. In this work, through replacing the electron-donating aromatic group with a methoxy group and combining intramolecular halogen bond to promote intersystem crossing and suppress nonradiative transition, an efficient UOP molecule (2Br-OSPh) has been synthesized with the longest lifetime and brightest UOP among its isomers. As compared to CzS2Br, which has a similar substituted position of bromine atom and a larger k isc (the rate of intersystem crossing), the smaller ΔE TT* (the energy gap between monomeric phosphorescence and aggregated state phosphorescence) in 2Br-OSPh could accelerate the transition from T 1 to T 1 *. This research indicates that both generation and accumulation of triplet excitons play an important role in realizing efficient UOP materials.
Ultralong organic phosphorescence (UOP) has attracted increasing attention due to its potential applications in optoelectronics, bioelectronics, and security protection. However, achieving UOP with high quantum efficiency (QE) over 20 % is still full of challenges due to intersystem crossing (ISC) and fast non‐radiative transitions in organic molecules. Here, we present a novel strategy to enhance the QE of UOP materials by modulating intramolecular halogen bonding via structural isomerism. The QE of CzS2Br reaches up to 52.10 %, which is the highest afterglow efficiency reported so far. The crucial reason for the extraordinary QE is intramolecular halogen bonding, which can not only effectively enhance ISC by promoting spin–orbit coupling, but also greatly confine motions of excited molecules to restrict non‐radiative pathways. This work provides a reasonable strategy to develop highly efficient UOP materials for practical applications.
To achieve highly‐efficient organic light‐emitting diodes (OLEDs), great efforts have been devoted into constructing thermally activated delayed fluorescence (TADF) with high horizontal dipole ratios (Θ//). Here, we proposed a design strategy by integrating a rigid electron‐accepting oxygen‐bridged boron core with triple electron‐donating groups, which exhibited a “shamrock‐shape”, namely BO‐3DMAC and BO‐3DPAC. Benefiting from the rigid and large‐planar skeletons brought by shamrock‐shaped design, BO‐3DMAC and BO‐3DPAC exhibit high Θ// of 84%/70% and 93%/94% in neat/doped films, respectively, and finally furnish excellent external quantum efficiencies (EQEs) of up to 28.3% and 38.7% in 20 wt% doped OLEDs with sky‐blue emission, as well as adequate EQEs of up to 21.0% and 16.7% in nondoped OLEDs. This work unveils a promising strategy to establish high‐Θ// TADF emitters by constructing large‐planar molecular structures using shamrock‐shaped design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.