Both miR-143-5p and miR-143-3p function as anti-oncomirs in gastric cancer. However, miR-143-5p alone directly targets COX-2, and it exhibits a stronger tumor suppressive effect than miR-143-3p.
Invasion and metastasis are the major causes of death in patients with esophageal squamous cell carcinoma (ESCC). Recent studies have confirmed that SPARC/osteonectin, cwcv and kazal-like domains proteoglycan 1 (SPOCK1) plays multiple roles in cancer progression. This study aims to explore the clinical characteristics of SPOCK1 in ESCC and its roles in the migration and invasion of ESCC cell lines. In this study, the up-regulation of SPOCK1 expression was frequently detected in primary ESCC tumor tissues compared with those in non-tumor tissues, which was significantly associated with tumor invasion (p = 0.004) and distant metastasis (p = 0.010). SPOCK1 was expressed at higher level in TE13 cells as compared to the low malignant Eca109 and TE1 cells. Overexpression of SPOCK1 in Eca109 cells decreased the expressions of epithelial marker E-cadherin and ZO-1, while increased mesenchymal marker Vimentin and N-cadherin levels. After ectopic expression of SPOCK1, Eca109 cells exhibited a morphological change from an epithelial cobblestone phenotype to an elongated fibroblastic phenotype, concomitant with cytoskeletal rearrangements and increased migration and invasion, suggesting that EMT occurs. While silencing SPOCK1 in TE13 cells had the opposite effects. These results suggest that up-regulation of SPOCK1 in ESCC induces EMT, thus promotes migration and invasion in ESCC cells.
Abstract. Emerging evidence has indicated that microRNAs (miRNAs) are frequently dysregulated and are fundamental in the pathogenesis of hepatocellular carcinoma (HCC). However, the roles of miR-195 in HCC have not been well elucidated. In the present study, the expression of miR-195 was determined to be markedly downregulated in HCC tissues and cell lines, as compared with normal liver cells. Restoration of miR-195 expression resulted in significant inhibition of the proliferation and tumorigenicity of HCC cells in vitro and in vivo. Gene expression data and luciferase reporter assays revealed that miR-195 is able to directly inhibit the expression of astrocyte elevated gene 1 (AEG-1) through interaction with its 3' untranslated region. Consistently, an inverse correlation between miR-195 and AEG-1 expression was observed in HCC tissues. Furthermore, the overexpression of AEG-1 was able to partially attenuate the miR-195-induced inhibition of cell growth and promotion of apoptosis. Taken together, these findings indicate that miR-195 functions as a tumor suppressor by inhibiting AEG-1. This pathway may provide new insights into the potential molecular mechanisms of HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.