Abstract-Collaborative filtering (CF) is an important and popular technology for recommender systems. However, current CF methods suffer from such problems as data sparsity, recommendation inaccuracy, and big-error in predictions. In this paper, we borrow ideas of object typicality from cognitive psychology and propose a novel typicality-based collaborative filtering recommendation method named TyCo. A distinct feature of typicality-based CF is that it finds "neighbors" of users based on user typicality degrees in user groups (instead of the corated items of users, or common users of items, as in traditional CF). To the best of our knowledge, there has been no prior work on investigating CF recommendation by combining object typicality. TyCo outperforms many CF recommendation methods on recommendation accuracy (in terms of MAE) with an improvement of at least 6.35 percent in Movielens data set, especially with sparse training data (9.89 percent improvement on MAE) and has lower time cost than other CF methods. Further, it can obtain more accurate predictions with less number of big-error predictions.
Heterogeneous domain adaptation (HDA) aims to exploit knowledge from a heterogeneous source domain to improve the learning performance in a target domain. Since the feature spaces of the source and target domains are different, the transferring of knowledge is extremely difficult. In this paper, we propose a novel semi-supervised algorithm for HDA by exploiting the theory of optimal transport (OT), a powerful tool originally designed for aligning two different distributions. To match the samples between heterogeneous domains, we propose to preserve the semantic consistency between heterogeneous domains by incorporating label information into the entropic Gromov-Wasserstein discrepancy, which is a metric in OT for different metric spaces, resulting in a new semi-supervised scheme. Via the new scheme, the target and transported source samples with the same label are enforced to follow similar distributions. Lastly, based on the Kullback-Leibler metric, we develop an efficient algorithm to optimize the resultant problem. Comprehensive experiments on both synthetic and real-world datasets demonstrate the effectiveness of our proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.