Background: Mitochondrial dysfunction is considered to contribute to the development of age-related hearing loss (AHL). The regulation of mitochondrial function requires mitochondrial quality control, which includes mitophagy and dynamics. Dynamin-related Protein 1 (DRP-1) is believed to play a central role in this regulation. However, the underlying mechanism of DRP-1 in AHL remains unclear. Here, we examined whether the decline of DRP-1-dependent mitophagy contributes to the development of AHL. Methods: We induced cellular and cochlear senescence using hydrogen peroxide (H 2 O 2) and evaluated the level of senescence through senescence-associated β-galactosidase staining. We evaluated mitophagy levels via fluorescence imaging and Western Blotting of LC3II and P62. Mitochondrial function was assessed by ATP assay, mtDNA assay, and JC-1. Results: We found that both the expression of DRP-1 and the mitophagy level decreased in senescent cells and aged mice. DRP-1 overexpression in HEI-OC1 cells initiated mitophagy and preserved mitochondrial function when exposed to H 2 O 2 , while cells with DRP-1 silencing displayed otherwise. Moreover, inhibition of DRP-1 by Mdivi-1 blocked mitophagy and exacerbated hearing loss in aged C57BL/6 mice. Conclusion: These results indicated that DRP-1 initiated mitophagy, eliminated mitochondrial dysfunction, and may protect against oxidative stress-induced senescence. These results provide a potential therapeutic target for AHL.
Long noncoding RNA (lncRNA) disorder has been found in many kinds of age-associated diseases. However, the role of lncRNA in the development of age-related hearing loss (AHL) is still largely unknown. This study sought to uncover AHL-associated lncRNAs and the function. RNA-sequencing was conducted to profile lncRNA expression in the cochlea of an early-onset AHL mouse model. RT-qPCR assay was used to validate the expression pattern of lncRNAs. ATP assay, JC-1 assay, mitochondrial probe staining, CCK-8 assay, Western blot, and immunocytochemistry were performed to detect the effects of lncRNA AW112010 in HEI-OC1 cells and the mouse cochlea. We identified 88 significantly upregulated lncRNAs and 46 significantly downregulated lncRNAs in the cochlea of aged C57BL/6 mice. We focused on the significantly upregulated AW112010. Silencing of AW112010 decreased the ATP level, mitochondrial membrane potential, and cell viability and increased mitochondrial ROS generation under oxidative stress in HEI-OC1 cells. AW112010 overexpression promoted cell survival in HEI-OC1 cells. AW112010 knockdown reduced mitochondrial mass and impaired mitochondrial biogenesis in HEI-OC1 cells. Activation of mitochondrial biogenesis by resveratrol and STR1720 promoted cell survival. The mitochondrial biogenesis process was activated in the cochlea of aged mice. Moreover, AW112010 regulated AMPK signaling in HEI-OC1 cells. Transcription factor Arid5b elevated in the aged cochlea and induced AW112010 expression and mitochondrial biogenesis in HEI-OC1 cells. Taken together, lncRNAs are dysregulated with aging in the cochlea of C57BL/6 mice. The Arid5b/AW112010 signaling was induced in the aged mouse cochlea and positively modulated the mitochondrial biogenesis to maintain mitochondrial function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.