The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape.
The ongoing refugee crisis in Europe has seen many countries rush to construct border security fencing to divert or control the flow of people. This follows a trend of border fence construction across Eurasia during the post-9/11 era. This development has gone largely unnoticed by conservation biologists during an era in which, ironically, transboundary cooperation has emerged as a conservation paradigm. These fences represent a major threat to wildlife because they can cause mortality, obstruct access to seasonally important resources, and reduce effective population size. We summarise the extent of the issue and propose concrete mitigation measures.
Large carnivores can be found in different scenarios of cohabitation with humans. Behavioral adaptations to minimize risk from humans are expected to be exacerbated where large carnivores are most vulnerable, such as at breeding sites. Using wolves as a model species, along with data from 26 study areas across the species´ worldwide range, we performed a meta-analysis to assess the role of humans in breeding site selection by a large carnivore. Some of the patterns previously observed at the local scale become extrapolatable to the entire species range provided that important sources of variation are taken into account. Generally, wolves minimised the risk of exposure at breeding sites by avoiding human-made structures, selecting shelter from vegetation and avoiding agricultural lands. Our results suggest a scaled hierarchical habitat selection process across selection orders by which wolves compensate higher exposure risk to humans within their territories via a stronger selection at breeding 3 sites. Dissimilar patterns between continents suggest that adaptations to cope with human-associated risks are modulated by the history of coexistence and persecution. Although many large carnivores persisting in human-dominated landscapes do not require large-scale habitat preservation, habitat selection at levels below occupancy and territory should be regarded in management and conservation strategies aiming to preserve these species in such contexts. In this case, we recommend providing shelter from human interference at least in small portions of land in order to fulfill the requirements of the species to locate their breeding sites.
In the last two centuries, persecution and deforestation caused grey wolf Canis lupus populations in Europe to decline. Recently, their numbers started to recover although most populations still remain isolated from one another. This study presents the first documented evidence of the successful reconnection of the Dinaric-Balkan and the Alpine wolf populations via long distance dispersal and subsequent reproduction. A young male wolf radiocollared in the Dinaric Mountains in July 2011 travelled through Slovenia and Austria to the Italian Alps, where he settled in March 2012. During the 98 days of dispersal period the wolf has travelled a cumulative line distance of 1176 km crossing multiple anthropogenic and natural barriers, and successfully hunting wild prey until he settled 233 km straight line distance from its natal territory. Camera trapping, snow tracking and genetic evidence in the new territory confirmed pairing with a female wolf from the neighboring Alpine population. In the following year the pair has produced a first documented "mixed" litter between wolves from the Dinaric-Balkan and the Alpine wolf populations.This case study demonstrates the potential for the future merging of European wolf populations even in human-dominated landscapes and highlights the importance of transboundary cooperation in wolf research and management.
In species with large geographic ranges, genetic diversity of different populations may be well studied, but differences in loci and sample sizes can make the results of different studies difficult to compare. Yet, such comparisons are important for assessing the status of populations of conservation concern. We propose a simple approach of using a single well-studied reference population as a 'yardstick' to calibrate results of different studies to the same scale, enabling comparisons. We use a well-studied large carnivore, the brown bear (Ursus arctos), as a case study to demonstrate the approach. As a reference population, we genotyped 513 brown bears from Slovenia using 20 polymorphic microsatellite loci. We used this data set to calibrate and compare heterozygosity and allelic richness for 30 brown bear populations from 10 different studies across the global distribution of the species. The simplicity of the reference population approach makes it useful for other species, enabling comparisons of genetic diversity estimates between previously incompatible studies and improving our understanding of how genetic diversity is distributed throughout a species range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.