There is significant potential for improvement in CT practice and protocol use for children in less resourced countries. Dose estimates for young children varied widely. This survey provides critical baseline data for ongoing quality improvement efforts by the IAEA.
With increasing use of CT in children and a lack of use of appropriateness criteria, there is a strong need to implement guidelines to avoid unnecessary radiation doses to children.
The article reports results from the largest international dose survey in paediatric computed tomography (CT) in 32 countries and proposes international diagnostic reference levels (DRLs) in terms of computed tomography dose index (CTDI vol) and dose length product (DLP). It also assesses whether mean or median values of individual facilities should be used. A total of 6115 individual patient data were recorded among four age groups: <1 y, >1-5 y, >5-10 y and >10-15 y. CTDIw, CTDI vol and DLP from the CT console were recorded in dedicated forms together with patient data and technical parameters. Statistical analysis was performed, and international DRLs were established at rounded 75th percentile values of distribution of median values from all CT facilities. The study presents evidence in favour of using median rather than mean of patient dose indices as the representative of typical local dose in a facility, and for establishing DRLs as third quartile of median values. International DRLs were established for paediatric CT examinations for routine head, chest and abdomen in the four age groups. DRLs for CTDI vol are similar to the reference values from other published reports, with some differences for chest and abdomen CT. Higher variations were observed between DLP values, based on a survey of whole multi-phase exams. It may be noted that other studies in literature were based on single phase only. DRLs reported in this article can be used in countries without sufficient medical physics support to identify non-optimised practice. Recommendations to improve the accuracy and importance of future surveys are provided.
To investigate the effect of the exposure parameters on image quality (IQ) metrics of phantom images, obtained automatically using software or from visual evaluation. Methods: Three commercial phantoms and a homemade phantom constructed according to the instructions given in the IAEA Human Health Series No. 39 publication were used, along with the respective software that estimate automatically various IQ metrics. Images with various exposure parameters were acquired in a digital radiography (DR) unit. For the commercial phantoms, visual evaluations were also performed. The IQ scores obtained were analyzed to investigate the effects of increasing incident air kerma (IAK), tube potential (kVp), additional filtration, and acquisition protocol on IQ. Results: The effects of the exposure parameters on the IQ metrics, determined with the commercial and the IAEA phantoms, were not the same. For example, clear trends of improvement of IQ scores with increased IAK and reduction of most IQ scores with increased kVp were observed mostly with the IAEA phantom, but not with the commercial phantoms (for both automatic and visual scoring methods). For all phantoms, the maximum variations in IQ scores observed for repeated identical exposures were almost always below 10% with automatic evaluation whereas, for visual evaluation, reached 17%. Conclusions: Failure to detect some expected trends with the complex commercial phantoms may be attributed to the fact that IQ in DR is more strongly affected by the post-processing procedures, which may mask the effect of other parameters on IQ, something that was not observed with the simple IAEA phantom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.