The mammalian inner ear contains the cochlea and vestibular organs, which are responsible for hearing and balance, respectively. The epithelia of these sensory organs contain hair cells that function as mechanoreceptors to transduce sound and head motion. The molecular mechanisms underlying hair cell development and differentiation are poorly understood. Math1, a mouse homolog of the Drosophila proneural gene atonal, is expressed in inner ear sensory epithelia. Embryonic Math1-null mice failed to generate cochlear and vestibular hair cells. This gene is thus required for the genesis of hair cells.
We describe a transgenesis platform for Drosophila melanogaster that integrates three recently developed technologies: a conditionally amplifiable bacterial artificial chromosome (BAC), recombineering, and bacteriophage PhiC31-mediated transgenesis. The BAC is maintained at low copy number, facilitating plasmid maintenance and recombineering, but is induced to high copy number for plasmid isolation. Recombineering allows gap repair and mutagenesis in bacteria. Gap repair efficiently retrieves DNA fragments up to 133 kilobases long from P1 or BAC clones. PhiC31-mediated transgenesis integrates these large DNA fragments at specific sites in the genome, allowing the rescue of lethal mutations in the corresponding genes. This transgenesis platform should greatly facilitate structure/function analyses of most Drosophila genes.
In a forward screen for genes affecting neurotransmission in Drosophila, we identified mutations in dynamin-related protein (drp1). DRP1 is required for proper cellular distribution of mitochondria, and in mutant neurons, mitochondria are largely absent from synapses, thus providing a genetic tool to assess the role of mitochondria at synapses. Although resting Ca2+ is elevated at drp1 NMJs, basal synaptic properties are barely affected. However, during intense stimulation, mutants fail to maintain normal neurotransmission. Surprisingly, FM1-43 labeling indicates normal exo- and endocytosis, but a specific inability to mobilize reserve pool vesicles, which is partially rescued by exogenous ATP. Using a variety of drugs, we provide evidence that reserve pool recruitment depends on mitochondrial ATP production downstream of PKA signaling and that mitochondrial ATP limits myosin-propelled mobilization of reserve pool vesicles. Our data suggest a specific role for mitochondria in regulating synaptic strength.
We demonstrate the versatility of a collection of insertions of the transposon Minos mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow+ marker flanked by two inverted bacteriophage ΦC31 attP sites. MiMIC integrates almost at random in the genome to create sites for DNA manipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp system. Insertions within coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the Drosophila melanogaster toolkit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.