As the human life span increases, the number of people suffering from cognitive decline is rising dramatically. The mechanisms underlying age-associated memory impairment are, however, not understood. Here we show that memory disturbances in the aging brain of the mouse are associated with altered hippocampal chromatin plasticity. During learning, aged mice display a specific deregulation of histone H4 lysine 12 (H4K12) acetylation and fail to initiate a hippocampal gene expression program associated with memory consolidation. Restoration of physiological H4K12 acetylation reinstates the expression of learning-induced genes and leads to the recovery of cognitive abilities. Our data suggest that deregulated H4K12 acetylation may represent an early biomarker of an impaired genome-environment interaction in the aging mouse brain.
A r t i c l e sThe dog tapeworm E. granulosus is one of a group of medically important parasitic helminths of the family Taeniidae (Platyhelminthes; Cestoda; Cyclophyllidea) that infect at least 50 million people globally 1 . Its life cycle involves two mammals, including an intermediate host, usually a domestic or wild ungulate (humans are accidental intermediate hosts) and a canine-definitive host, such as the domestic dog. The larval (metacestode) stage causes hydatidosis (cystic hydatid disease; cystic echinococcosis), a chronic cyst-forming disease in the intermediate (human) host. Currently, up to 3 million people are infected with E. granulosus 2,3 , and, in some areas, 10% of the population has detectable hydatid cysts by abdominal ultrasound and chest X-ray 4,5 .E. granulosus has no gut, circulatory or respiratory organs. It is monoecious, producing diploid eggs that give rise to ovoid embryos, the oncospheres. Strobilization is a notable feature of cestode biology, whereby proglottids bud distally from the anterior scolex, resulting in the production of tandem reproductive units exhibiting increasing degrees of development. A unique characteristic of the larvae (protoscoleces, PSCs) within the hydatid cyst is an ability to develop bidirectionally into an adult worm in the dog gastrointestinal tract or into a secondary hydatid cyst in the intermediate (human) host, a process triggered by bile acids 6 . Another distinct feature of E. granulosus is its capacity to infect and adapt to a large number of mammalian species as intermediate hosts, which has contributed to its cosmopolitan global distribution.Here we report the sequence and analysis of the E. granulosus genome. Comprising nine pairs of chromosomes 7 , it is one of the first cestode genomes to be sequenced and complements the recent publication by Tsai et al. 8 of a high-quality genome for Echinococcus multilocularis (the cause of alveolar echinococcosis), together with draft genomes of three other tapeworm species including E. granulosus. Our study provides insights into the biology, development, differentiation, evolution and host interaction of E. granulosus and has identified a range of drug and vaccine targets that can facilitate the development of new intervention tools for hydatid treatment and control. Cystic echinococcosis (hydatid disease), caused by the tapeworm E. granulosus, is responsible for considerable human morbidity and mortality. This cosmopolitan disease is difficult to diagnose, treat and control. We present a draft genomic sequence for the worm comprising 151.6 Mb encoding 11,325 genes. Comparisons with the genome sequences from other taxa show that E. granulosus has acquired a spectrum of genes, including the EgAgB family, whose products are secreted by the parasite to interact and redirect host immune responses. We also find that genes in bile salt pathways may control the bidirectional development of E. granulosus, and sequence differences in the calcium channel subunit EgCa v b 1 may be associated with praziquantel sens...
Rice is the principal food for over half of the population of the world. With its genome size of 430 megabase pairs (Mb), the cultivated rice species Oryza sativa is a model plant for genome research. Here we report the sequence analysis of chromosome 4 of O. sativa, one of the first two rice chromosomes to be sequenced completely. The finished sequence spans 34.6 Mb and represents 97.3% of the chromosome. In addition, we report the longest known sequence for a plant centromere, a completely sequenced contig of 1.16 Mb corresponding to the centromeric region of chromosome 4. We predict 4,658 protein coding genes and 70 transfer RNA genes. A total of 1,681 predicted genes match available unique rice expressed sequence tags. Transposable elements have a pronounced bias towards the euchromatic regions, indicating a close correlation of their distributions to genes along the chromosome. Comparative genome analysis between cultivated rice subspecies shows that there is an overall syntenic relationship between the chromosomes and divergence at the level of single-nucleotide polymorphisms and insertions and deletions. By contrast, there is little conservation in gene order between rice and Arabidopsis.
Of the two cultivated species of allopolyploid cotton, Gossypium barbadense produces extra-long fibers for the production of superior textiles. We sequenced its genome (AD)2 and performed a comparative analysis. We identified three bursts of retrotransposons from 20 million years ago (Mya) and a genome-wide uneven pseudogenization peak at 11–20 Mya, which likely contributed to genomic divergences. Among the 2,483 genes preferentially expressed in fiber, a cell elongation regulator, PRE1, is strikingly At biased and fiber specific, echoing the A-genome origin of spinnable fiber. The expansion of the PRE members implies a genetic factor that underlies fiber elongation. Mature cotton fiber consists of nearly pure cellulose. G. barbadense and G. hirsutum contain 29 and 30 cellulose synthase (CesA) genes, respectively; whereas most of these genes (>25) are expressed in fiber, genes for secondary cell wall biosynthesis exhibited a delayed and higher degree of up-regulation in G. barbadense compared with G. hirsutum, conferring an extended elongation stage and highly active secondary wall deposition during extra-long fiber development. The rapid diversification of sesquiterpene synthase genes in the gossypol pathway exemplifies the chemical diversity of lineage-specific secondary metabolites. The G. barbadense genome advances our understanding of allopolyploidy, which will help improve cotton fiber quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.