Large-scale analysis of 2,152 Ig-seq datasets reveals key features of B cell biology and the antibody repertoire Graphical abstract Highlights d 52 core V genes contribute to more than 99% of the antibody repertoire d V genes at both proximal and distal ends on the chromosome are preferably used d Shared clones between repertoires are underestimated because of undersampling d Motif RGYW-associated mutations tend to be positively selected
The full set of T cell receptors (TCRs) in an individual is known as his or her TCR repertoire. Defining TCR repertoires under physiological conditions and in response to a disease or vaccine may lead to a better understanding of adaptive immunity and thus has great biological and clinical value. In the past decade, several high-throughput sequencing-based tools have been developed to assign TCRs to germline genes and to extract complementarity-determining region 3 (CDR3) sequences using different algorithms. Although these tools claim to be able to perform the full range of fundamental TCR repertoire analyses, there is no clear consensus of which tool is best suited to particular projects. Here, we present a systematic analysis of 12 available TCR repertoire analysis tools using simulated data, with an emphasis on fundamental analysis functions. Our results shed light on the detailed functions of TCR repertoire analysis tools and may therefore help researchers in the field to choose the right tools for their particular experimental design.
The adaptive immune receptor repertoire consists of the entire set of an individual’s BCRs and TCRs and is believed to contain a record of prior immune responses and the potential for future immunity. Analyses of TCR repertoires via deep learning (DL) methods have successfully diagnosed cancers and infectious diseases, including coronavirus disease 2019. However, few studies have used DL to analyze BCR repertoires. In this study, we collected IgG H chain Ab repertoires from 276 healthy control subjects and 326 patients with various infections. We then extracted a comprehensive feature set consisting of 10 subsets of repertoire-level features and 160 sequence-level features and tested whether these features can distinguish between infected individuals and healthy control subjects. Finally, we developed an ensemble DL model, namely, DL method for infection diagnosis (https://github.com/chenyuan0510/DeepID), and used this model to differentiate between the infected and healthy individuals. Four subsets of repertoire-level features and four sequence-level features were selected because of their excellent predictive performance. The DL method for infection diagnosis outperformed traditional machine learning methods in distinguishing between healthy and infected samples (area under the curve = 0.9883) and achieved a multiclassification accuracy of 0.9104. We also observed differences between the healthy and infected groups in V genes usage, clonal expansion, the complexity of reads within clone, the physical properties in the α region, and the local flexibility of the CDR3 amino acid sequence. Our results suggest that the Ab repertoire is a promising biomarker for the diagnosis of various infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.