Background As an insulin-dependent disease, type 1 diabetes requires paying close attention to the glycemic control. Studies have shown that mobile health (mHealth) can improve the management of chronic diseases. However, the effectiveness of mHealth in controlling the glycemic control remains uncertain. The objective of this study was to carry out a systematic review and meta-analysis using the available literature reporting findings on mHealth interventions, which may improve the management of type 1 diabetes. Methods We performed a systematic literature review of all studies in the PubMed, Web of Science, and EMbase databases that used mHealth (including mobile phones) in diabetes care and reported glycated hemoglobin (HbA1c) values as a measure of glycemic control. The fixed effects model was used for this meta-analysis. Results This study analyzed eight studies, which involved a total of 602 participants. In the meta-analysis, the fixed effects model showed a statistically significant decrease in the mean of HbA1c in the intervention group: − 0.25 (95% confidence interval: − 0.41, − 0.09; P = 0.003, I 2 = 12%). Subgroup analyses indicated that the patient’s age, the type of intervention, and the duration of the intervention influenced blood glucose control. Funnel plots showed no publication bias. Conclusions Mobile health interventions may be effective among patients with type 1 diabetes. A significant reduction in HbA1c levels was associated with adult age, the use of a mobile application, and the long-term duration of the intervention.
Background: Short messages service (SMS) provides a practical medium for delivering content to address patients to adherence to self-management. The aim of study was to design some patient-centered health education messages, evaluate the feasibility of messages, and explore the effect of this model. Methods: The messages were designed by a panel of experts, and SMS Quality Evaluation Questionnaire was used to evaluate their quality. A two-arm randomized controlled trial was conducted to evaluate the effectiveness of this management model. Participants were randomly divided into an intervention group (IG) who received evaluated messages and a control group (CG) who received regular education. The primary outcomes were changes in plasma glucose and control rates, and the secondary outcomes were improvements in diet control, physical activities, weight control, etc. Results: A total of 42 messages covering five main domains: health awareness, diet control, physical activities, living habits and weight control were designed, and the average scores of the messages were 8.0 (SD 0.7), 8.5 (SD 0.6), 7.9 (SD 1.0), 8.0 (SD 0.7), and 8.4 (SD 0.9), respectively. In the SMS intervention, 171 patients with an average age of 55.1 years were involved, including 86 in the CG and 85 in the IG. At 12 months, compared with the control group (CG), the decrease of fasting plasma glucose (FPG) (1.5 vs. 0.4, P = 0.011) and control rate (49.4% vs. 33.3%, P = 0.034), the postprandial glucose (PPG) (5.8 vs. 4.2, P = 0.009) and control rate (57.8% vs. 33.7%, P = 0.002) were better in the intervention group (IG). In terms of selfmanagement, improvements in weight control (49.3% vs. 28.2%, P = 0.031), vegetables consumption (87.3% vs. 29.0%, P < 0.001), fruits consumption (27.5% vs. 7.4%, P = 0.022), and physical activities (84.7% vs. 70.0%, P = 0.036) were better in the IG than in the CG. Conclusions: The overall quality of the messages was high. It was effective and feasible to carry out an SMS intervention to improve the behavioral habits of patients with chronic diseases in remote and undeveloped areas.
BackgroundHypertension is a major risk factor for the global burden of disease, particularly in countries that are not economically developed. This study aimed to evaluate risk factors associated with self-reported hypertension among residents of Inner Mongolia using a cross-sectional study and to explore trends in the rate of self-reported hypertension.MethodsMulti-stage stratified cluster sampling was used to survey 13,554 participants aged more than 15 years residing in Inner Mongolia for the 2013 Fifth Health Service Survey. Hypertension was self-reported based on a past diagnosis of hypertension and current use of antihypertensive medication. Adjusted odds risks (ORs) of self-reported hypertension were derived for each independent risk factor including basic socio-demographic and clinical factors using multivariable logistic regression. An optimized risk score model was used to assess the risk and determine the predictive power of risk factors on self-reported hypertension among Inner Mongolia residents.ResultsDuring study period, self-reported hypertension prevalence was 19.0% (2571/13,554). In multivariable analyses, both female and minority groups were estimated to be associated with increased risk of self-reported hypertension, adjusted ORs (95% CI) were 1.22 (1.08, 1.37) and 1.66 (1.29, 2.13) for other minority compared with Han, increased risk of self-reported hypertension prevalence was associated with age, marital status, drinking, BMI, and comorbidity. In the analyses calculated risk score by regression coefficients, old age (≥71) had a score of 12, which was highest among all examined factors. The predicted probability of self-reported hypertension was positively associated with risk score. Of 13,421 participants with complete data, 284 had a risk score greater than 20, which corresponded to a high estimated probability of self-reported hypertension (≥67%).ConclusionsSelf-reported hypertension was largely related to multiple clinical and socio-demographic factors. An optimized risk score model can effectively predict self-reported hypertension. Understanding these factors and assessing the risk score model can help to identify the high-risk groups, especially in areas with multi-ethnic populations.Electronic supplementary materialThe online version of this article (10.1186/s12913-018-3279-3) contains supplementary material, which is available to authorized users.
Objective:The present study investigated the association between dietary patterns and hypertension applying the Chinese Dietary Balance Index-07 (DBI-07).Design:A cross-sectional study on adult nutrition and chronic disease in Inner Mongolia. Dietary data were collected using 24 h recall over three consecutive days and weighing method. Dietary patterns were identified using principal components analysis. Generalized linear models and multivariate logistic regression models were used to examine the associations between DBI-07 and dietary patterns, and between dietary patterns and hypertension.Setting:Inner Mongolia (n 1861).Participants:A representative sample of adults aged ≥18 years in Inner Mongolia.Results:Four major dietary patterns were identified: ‘high protein’, ‘traditional northern’, ‘modern’ and ‘condiments’. Generalized linear models showed higher factor scores in the ‘high protein’ pattern were associated with lower DBI-07 (βLBS = −1·993, βHBS = −0·206, βDQD = −2·199; all P < 0·001); the opposite in the ‘condiments’ pattern (βLBS = 0·967, βHBS = 0·751, βDQD = 1·718; all P < 0·001). OR for hypertension in the highest quartile of the ‘high protein’ pattern compared with the lowest was 0·374 (95 % CI 0·244, 0·573; Ptrend < 0·001) in males. OR for hypertension in the ‘condiments’ pattern was 1·663 (95 % CI 1·113, 2·483; Ptrend < 0·001) in males, 1·788 (95 % CI 1·155, 2·766; Ptrend < 0·001) in females.Conclusions:Our findings suggested a higher-quality dietary pattern evaluated by DBI-07 was related to decreased risk for hypertension, whereas a lower-quality dietary pattern was related to increased risk for hypertension in Inner Mongolia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.