Although Dechlorane Plus (DP) has been used as a polychlorinated flame retardant for almost half a century, its detection in the environment was not reported until 2006. The subsequent intensive research has confirmed its global ubiquity. A few reviews have presented the properties, analytical methods and environmental occurrence of DP and related compounds in the past several years. The present review emphasizes on the environmental behavior of DP isomers which is assessed by the variation of the isomer ratio of DP in various matrices. Other aspects including the analytical methods, emission sources, general environmental occurrence and bioaccumulation of DP are also summarized. In this review, three typical emission sources in the environment are categorized after introducing the measurement method of DP. The temporal-spatial distribution is then evaluated at the global scale, which provides an integrated representation of the environmental occurrence of DP and potential impact on the human health and ecosystems. The variations of DP isomer ratio in various matrices reinforce its source related distribution and their stereoselective bioaccumulation. Thereafter, DP related compounds and dechlorinated analogs are briefly summarized in regards to their occurrence in various matrices, suggesting their ubiquity in the environment and bioavailability. Further studies are required to better assess the exposures and toxicological effects of DP and its analogs. A special concern is the serious contamination in e-waste recycling areas in developing countries, where long-term monitoring data on the association of DP exposure and adverse effects to human health and ecosystems is urgently needed.
Atmospheric PCBs and PBDEs were measured at the Chinese Great Wall Station, West Antarctica during 2011 e2014. Nonracemic residues were commonly observed for chiral PCBs. Significant temperature dependence was observed for lighter PCBs (excluding PCB-11) in 2011 and 2012. The gas/particle partitioning behavior was evaluated by the steady-state-based model and equilibrium-state-based model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.