Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. Here, we report on a study of >12 million variants including 163,714 directly genotyped, most rare, protein-altering variant. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5×10–8) distributed across 34 loci. While wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first signal specific to wet AMD, near MMP9 (difference-P = 4.1×10–10). Very rare coding variants (frequency < 0.1%) in CFH, CFI, and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.
Background Age-related macular degeneration is the most common cause of blindness in Western populations. Susceptibility is influenced by age and by genetic and environmental factors. Complement activation is implicated in the pathogenesis. Methods We tested for an association between age-related macular degeneration and 13 singlenucleotide polymorphisms (SNPs) spanning the complement genes C3 and C5 in case subjects and control subjects from the southeastern region of England. All subjects were examined by an ophthalmologist and had independent grading of fundus photographs to confirm their disease status. To test for replication of the most significant findings, we genotyped a set of Scottish cases and controls. Results The common functional polymorphism rs2230199 (Arg80Gly) in the C3 gene, corresponding to the electrophoretic variants C3S (slow) and C3F (fast), was strongly associated with age-related macular degeneration in both the English group (603 cases and 350 controls, P = 5.9×10-5) and the Scottish group (244 cases and 351 controls, P = 5.0×10-5). The odds ratio for age-related macular degeneration in C3 S/F heterozygotes as compared with S/S homozygotes was 1.7 (95% confidence interval [CI], 1.3 to 2.1); for F/F homozygotes, the odds ratio was 2.6 (95% CI, 1.6 to 4.1). The estimated population attributable risk for C3F was 22%. Conclusions Complement C3 is important in the pathogenesis of age-related macular degeneration. This finding further underscores the influence of the complement pathway in the pathogenesis of this disease.
Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate understanding of AMD biology and help design new therapies, we executed a collaborative genomewide association study, examining >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 genomic loci associated with AMD with p<5×10−8 and enriched for genes involved in regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include 7 loci reaching p<5×10−8 for the first time, near the genes COL8A1/FILIP1L, IER3/DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9/MIR548A2, and B3GALTL. A genetic risk score combining SNPs from all loci displayed similar good ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.